Volume 2, Issue 2

Table of contents

Original research papers



Amandeep Kaur, Nagalaxmi Vemalapally, Grant Severson, Jatinder Gulani, David Bolduc, Maria Moroni

Pages: 75-81

DOI: 10.21175/RadJ.2017.02.017

Received: 10 JAN 2017, Received revised: 10 MAR 2017, Accepted: 15 MAY 2017, Published online: 28 OCT 2017

There is a pressing need to develop animal models as well as treatment appropriate for age-specific radiation injuries. The minipig represents a promising animal model for testing the effects of radiation on the pediatric population. We subjected piglets, age 6 weeks old (corresponding to less than 2 years old in human), to either sham irradiation or to total body irradiation (60Cobalt 0.6 Gy/min) at hematopoietic doses spanning from 1.6 Gy to 2.0 Gy, and determined the dose-survival relationship and course of radiation injury in the presence of minimal supportive care. The LD50/45 was determined to be 1.83 Gy [CI 1.70 – 1.91]. The course of hematopoietic acute radiation syndrome (H-ARS) in the piglet model resembled that of humans, with four distinct phases namely, prodromal phase, latent phase, manifest illness phase, and recovery or death. Kinetics of blood cell loss such as sudden lymphopenia, decline in neutrophil counts preceded by initial granulocytosis, erythrocytopenia, and thrombocytopenia with a characteristic shoulder followed by partial recovery mimicked the expected radiation-induced changes. Moribund animals were characterized by anorexia, lethargy, fever or hypothermia, bleeding, and dyspnea. Upon euthanasia, animals displayed dose dependent bone marrow hypoplasia and hemorrhages in several organs. Granulocyte colony stimulating factor (G-CSF), a countermeasure approved for H-ARS in humans and effective in adult minipig, was tested in the piglets. Administration of G-CSF enhanced survival by 37.5% and reduced both duration as well as nadir of neutropenia. In conclusion, the minipig provides a practical and feasible animal model for H-ARS and development of radiation countermeasures for the pediatric population. te
  1. P. Aebersold, “FDA experience with medical countermeasures under the animal rule,” Adv. Prev. Med., vol. 2012, pp. 1-11, Sep. 2012.
    DOI: 10.1155/2012/507571
    PMid: 21991452
    PMCid: PMC3177089
  2. Guidance for Industry - Nonclinical Safety Evaluation of Pediatric Drug Products, U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research, Rockville (MD), USA, 2006.
    Retrieved from: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/

    Retrieved on: Jan. 4, 2017.
  3. M. M. Swindle et al., “Swine as models in biomedical research and toxicology testing,” Vet. Pathol., vol. 49, no. 4, pp. 344-356, Jul. 2012.
    DOI: 10.1177/0300985811402846
    PMid: 21441112
  4. X. Li et al., “A novel and stable "two-hit" acute lung injury model induced by oleic acid in piglets,” Acta Vet. Scand., vol. 51, p. 17, Mar. 2009.
    DOI: 10.1186/1751-0147-51-17
    PMid: 19331663
    PMCid: PMC2673213
  5. A. J. Liu et al., “Effect of oleic acid-induced acute lung injury and conventional mechanical ventilation on renal function in piglets,” Chin. Med. J. (Engl.), vol. 126, no. 13, pp. 2530-2535, Jul. 2013.
    PMid: 23823829
  6. T. Elliott et al., “Gastrointestinal acute radiation syndrome in Göttingen minipigs (Sus scrofa domestica),” Comp. Med., vol. 64, no. 6, pp. 456-463, Dec. 2014.
    PMid: 25527026
    PMCid: PMC4275081
  7. M. Moroni et al., “Hematological changes as prognostic indicators of survival: similarities between Göttingen minipigs, humans, and other large animal models,” PLOS ONE, vol. 6, no. 9, p. e25210, Sep. 2011.
    DOI: 10.1371/journal.pone.0025210
    PMid: 21969873
    PMCid: PMC3182184
  8. M. Moroni et al., “Hematopoietic radiation syndrome in the Göttingen minipig,” Radiat. Res., vol. 176, no. 1, pp. 89-101, 2011.
    DOI: 10.1667/RR2481.1
    PMid: 21520996
  9. M. Moroni et al., “Accelerated hematopoietic syndrome after radiation doses bridging hematopoietic (H-ARS) and gastrointestinal (GI-ARS) acute radiation syndrome: early hematological changes and systemic inflammatory response syndrome in minipig,” Int. J. Radiat. Biol., vol. 90, no. 5, pp. 363-372, May 2014.
    DOI: 10.3109/09553002.2014.892226
    PMid: 24524283
  10. M. Moroni et al., “Significance of bioindicators to predict survival in irradiated minipigs,” Health Phys., vol. 106, no. 6, pp. 727-733, Jun. 2014.
    DOI: 10.1097/HP.0000000000000109
    PMid: 24776906
    PMCid: PMC4006360
  11. M. Moroni et al., “The Gottingen minipig is a model of hematopoietic acute radiation syndrome: G-colony stimulating factor stimulates hematopoiesis and enhances survival from lethal total-body γ-irradiation,” Int. J. Radiat. Oncol. Biol. Phys., vol. 86, no. 5, pp. 986-992, Aug. 2013.
    DOI: 10.1016/j.ijrobp.2013.04.041
    PMid: 23845847
    PMCid: PMC3710733
  12. C. I. Rios et al., “Building the strategic national stockpile through the NIAID Radiation Nuclear Countermeasures Program,” Drug Dev. Res., vol. 75, no. 1, pp. 23-28, Feb. 2014.
    DOI: 10.1002/ddr.21163
    PMid: 24648046
  13. Guide for the care and use of laboratory animals, 8th ed., ILAR, Washington, (DC), USA, 2011, pp. 1-154.
    Retrieved from: https://grants.nih.gov/grants/olaw/Guide-for-the-Care-and-Use-of-Laboratory-Animals.pdf
    Retrieved on: Jan. 4, 2017.
  14. J. S. Bradley, M. A. Jackson, “The use of systemic and topical fluoroquinolones,” Pediatrics, vol. 128, no. 4, pp. 1034-1045, Oct. 2011.
    DOI: 10.1542/peds.2011-1496
    PMid: 21949152
  15. P. D. Tamma et al., “Combination therapy for treatment of infections with gram-negative bacteria,” Clin. Microbiol. Rev., vol. 25, no. 3, pp. 450-470, Jul. 2012.
    DOI: 10.1128/CMR.05041-11
    PMid: 22763634
    PMCid: PMC3416487
  16. AVMA guidelines for the euthanasia of animals, AVMA, Schaumburg (IL), USA, 2013, p. 50.
    Retrieved from: https://www.avma.org/KB/Policies/Documents/euthanasia.pdf
    Retrieved on: Jan. 4, 2017.
  17. A. L. Carsten, “Acute lethality - the hematopoietic syndrome in different species,” in Response of different species to total body irradiation, vol. 10, Lieden, Netherlands: Brill Publishers, 1984, ch. 1, pp. 59-86.
    DOI: 10.1007/978-94-009-6048-0_5
  18. M. Moroni et al., “Evaluation of the gamma-H2AX assay for radiation biodosimetry in a swine model,” Int. J. Mol. Sci., vol. 14, no. 7, pp. 14119-14135, Jul. 2013.
    DOI: 10.3390/ijms140714119
    PMid: 23880859
    PMCid: PMC3742235
  19. T. Johansen et al., “The obese Göttingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile,” Comp. Med., vol. 51, no. 2, pp. 150-155, Apr. 2001.
    PMid: 11922179
  20. H. L. Abrams, “Influence of Age, Body Weight, and Sex on Susceptibility of Mice to the Lethal Effects of X-radiation,” Exp. Biol. Med., vol. 76, pp. 729-732, Apr. 1951.
    DOI: 10.3181/00379727-76-18610
  21. D. C. Jones et al., “Age at x-irradiation and acute mortality in the adult male rat,” Rad. Res., vol. 38, no. 3, pp. 614-621, Jun. 1969.
    DOI: 10.2307/3572620
    PMid: 5790124
  22. B. Patel et al., “Mobilisation of haematopoietic stem cells in paediatric patients, prior to autologous transplantation following administration of plerixafor and G-CSF,” Pediatr. Blood Cancer, vol. 62, no. 8, pp. 1477-1480, Aug. 2015.
    DOI: 10.1002/pbc.25467
    PMid: 25755177
  23. A. M. Farese et al., “Filgrastim improves survival in lethally irradiated nonhuman primates,” Rad. Res., vol. 179, no. 1, pp. 89-100, Jan. 2013.
    DOI: 10.1667/RR3049.1
    PMid: 23210705
    PMCid: PMC4562422
  24. M. F. Ozkaynak et al., “Randomized comparison of antibiotics with and without granulocyte colony-stimulating factor in children with chemotherapy-induced febrile neutropenia: A report from the children’s Oncology group,” Pediatr. Blood Cancer, vol. 45, no. 3, pp. 274-280, Sep. 2005.
    DOI: 10.1002/pbc.20366
    PMid: 15806544


Nataliya Koltovaya, Alexandra Kokoreva, Natalya Shvaneva, Nadya Zhychkina

Pages: 82–85

DOI: 10.21175/RadJ.2017.02.018

Received: 26 JAN 2017, Received revised: 19 MAR 2017, Accepted: 22 MAY 2017, Published online: 28 OCT 2017

In connection with the active space exploration, the studies of the effects of heavy ions are currently of particular interest. Cosmic radiation is primarily composed of protons and other ions with energies of >10 MeV. We have modulated the effect of cosmic radiation by using heavy-ion beams at the Heavy-Ion Accelerator in Dubna (JINR). Particularly, we have investigated the biological effects induced by accelerated boron ions with the energy of 12-34 MeV/n and linear energy transfer (LET) 42, 61 and 101 keV/μm. Dose dependence of lethal damage, the induction of point mutations and chromosome rearrangements were studied. The effectiveness increased with the increase of LET and maximum effectiveness occurred at 61 keV/μm for inactivating and mutant effects.
  1. J. A. Sayeg, A. C. Birge, C. A. Beam, C. A. Tobias, “The effects of accelerated carbon nuclei and other radiations on the survival of haploid yeast. II. Biological experiments,” Radiation Res., vol. 10, no. 4, pp. 449-461, Apr. 1959.
    DOI: 10.2307/3570836
    PMid: 13645952
  2. S. Nakai, R. Mortimer, “Induction of different classes of genetic effects in yeast using heavy ions,” Radiat. Res. Suppl., vol. 7, pp. 172-181, 1967.
    DOI: 10.2307/3583710
  3. D. X. Tishkoff, N. Filosi, G. M. Gaida, R. D. Kolodner, “A novel mutation avoidance mechanism dependent on S. cerevisiaie RAD27 is distinct from DNA mismatch repair,” Cell, vol. 88, no. 2, pp. 253-263, Jan. 1997.
    DOI: 10.1016/S0092-8674(00)81846-2
  4. T. M. Williams, R. M. Fabbri, J. W. Reeves, G. F. Crouse, “A new reversion assay for measuring all possible base pair substitutions in Saccharomyces cerevisiae,Genetics, vol. 170, no. 3, pp. 1423-1426, Jul. 2005.
    DOI: 10.1534/genetics.105.042697
    PMid: 15911571
    PMCid: PMC1451166
  5. K. S. Lobachev, B. M. Shor, H. T. Tran, W. Taylor, J. D. Keen, M. Resnick, D. A. Gordenin, “Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae,Genetics, vol. 148, no. 4, pp. 1507-1524, Apr. 1998.
    PMid: 9560370
    PMCid: PMC1460095
  6. Y. Tsukamoto, J. Kato, H. Ikeda, “Effects of mutations of RAD50, RAD51, RAD52, and related genes on illegitimate recombination in Saccharomyces cerevisiae,Genetics, vol. 142, no. 2, pp. 383-391, Feb. 1996.
    PMid: 8852838
    PMCid: PMC1206973
  7. N. Koltovaya, N. Zhuchkina, N. Shvaneva, “Proton induction of gene mutations,” in RAD Conference Proceedings, Niš, Serbia, 2016, vol. 1, pp. 5-6.
    DOI: 10.21175/RadProc.2016.02
  8. A. B. Devin et al., “The start gene CDC28 and the genetic stability of yeast,” Yeast, vol. 6, no. 3, pp. 231-243, May-Jun. 1990.
    DOI: 10.1002/yea.320060308
    PMid: 2190433
  9. F. Sherman, G. R. Fink, J. B. Hicks, Laboratory Course Manual for Methods in Yeast Genetics, Cold Spring Harbor Laboratory, New York (NY), USA, 1981.
  10. R. Mortimer, T. Brustad, D. V. Cormack, “Influence of linear energy transfer and oxygen tension on the effectiveness of ionizing radiations for induction of mutations and lethality in Saccharomyces cerevisiae,Radiation Res., vol. 26, no. 4, pp. 465-482, Dec. 1965.
    DOI: 10.2307/3571858
    PMid: 5849703
  11. E. A. Krasavin, G. N. Timoshenko, “Laboratory of Radiation Biology research activities in 2003-2009,” JINR, Dubna, Russia, 2010.
  12. Д. В. Журавель, “Индукция точной эксцизии транспозона Tn10 в клетках E. coli при облучении ускоренными ионами с разной линейной передачей энергии,” Радиац. Биол. Радиоэкол., т. 4, но. 2, с. 138-141, 2004. (D. V. Zhuravel, “Induction of the Tn10 precise excision in E. coli cells after accelerated heavy ions irradiation,” Radiat. Radiobiol. Res., vol. 44, no. 2, pp. 138-141, 2004.)
  13. R. D. Govorun, I. V. Koshlan, N. A. Koshlan, E. A. Krasavin, N. L. Shmakova, “Chromosome instability of HPRT-mutant subclones induced by ionizing radiation of various LET,” Adv. Space Res., vol. 30, no. 4, pp. 885-890, Nov. 2002.
    DOI: 10.1016/S0273-1177(02)00407-6


Sergey Koryakin, Elena Isaeva, Evgeniy Beketov, Aleksei Solovev, Liliya Ulyanenko, Vladimir Fedorov, Victor Lityaev, Stepan Ulyanenko

Pages: 86–89

DOI: 10.21175/RadJ.2017.02.019

Received: 13 FEB 2017, Received revised: 24 APR 2017, Accepted: 2 JUL 2017, Published online: 28 OCT 2017

This study provides the quantitative assessment of the photon-capture therapy efficiency using the X-ray facility and Au nanocomposite in solutions based on hyaluronic acid and melanin. The RBE using 10 % survival criteria for murine B-16 melanoma cell cultures was 1.5. The rats with implanted sarcoma M-1 were locally irradiated with 28-32 Gy of tumor dose. Irradiation in 28 Gy of cell cultures with the 4 mg of Au-based solution administered 15 minutes before irradiation, showed the similar efficiency as conventional 32 Gy. The skin reaction yield is dependent only on the absorbed dose. The therapeutic gain using the tumor growth suppression factor was 1.35, which is comparable to the RBE of B-16 cell cultures.
  1. K. Kobayashi, N. Usami, E. Porcel et al., “Enhancement of radiation effect by heavy elements,” J. Mutation Res., vol. 704, no. 1-3, pp. 123 – 131, Apr-Jun. 2010.
    DOI: 10.1016/j.mrrev.2010.01.002
    PMid: 20074660
  2. G. H. Choi, S. J. Seo et al., “Photon activated therapy (PAT) using monochromatic synchrotron X-rays and iron oxide nanoparticles in a mouse tumor model: Feasibility study of PAT for the treatment of superficial malignancy,” Radiat. Oncology. vol. 7, p. 184, Oct. 2012.
    DOI: 10.1186/1748-717X-7-184
    PMid: 23111059
    PMCid: PMC3549855
  3. W. N. Rahman, T. Ackerly, C. F. He et al., “Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy,” Nanomedicine, vol. 5, no. 2, pp. 136 – 142, Jun. 2009.
    DOI: 10.1016/j.nano.2009.01.014
  4. T. Simon, S. Boca-Farcau, A. M. Gabudean et al., “LED-activated methylene blue-loaded Pluronic-nanogold hybrids in vitro photodynamic therapy,” Biophotonics, vol. 6, no. 11-12, pp. 950-953, Dec. 2013.
    DOI: 10.1002/jbio.201300058
    PMid: 23893922
  5. S. N. Koryakin, V. A. Yadrovskaya, E. E. Beketov et al., “The study of hyaluronic acid compounds for neutron capture and photon activation therapies,” Central European J. of Biol., vol. 9, no. 10, pp. 922-930, Oct. 2014.
    DOI: 10.2478/s11535-014-0329-7
  6. M. Apte, G. Girme, A. Bankar et al., “3, 4-dihydroxy-L-phenylalanine-derived melanin from Yarrowia lipolytica mediates the synthesis of silver and gold nanostructures,” J. of Nanobiotechnology, vol. 11, no. 2, pp. 1-9, Jan. 2013.
    DOI: 10.1186/1477-3155-11-2
  7. D. Chithrani, A. Ghazani, W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett., vol. 6, no. 4, pp. 662-668, Mar. 2006.
  8. DOI 10.1021/nl052396o
    PMid: 16608261
  9. D. Chithrani, S. Jelvesh, F. Jalali et al., “Gold nanoparticles as a radiation sensitizer in cancer therapy,” Radiat. Res., vol. 173, no. 6, pp. 719-728, Jun. 2010.
    DOI: 10.1667/RR1984.1
    PMid: 20518651
  10. MCNP – A General Monte Carlo N-Particle Transport Code, Version 5, Los Alamos (CA), USA, 2003.
    Retrieved from: https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf
    Retrieved on: Jan. 12, 2017
  11. В. Ф. Хохлов, П. В. Ижевский, В. Н. Кулаков и др., “Фармакокинетическая оценка препаратов для бинарной лучевой терапии в рамках скринингового исследования,” Российский биотерапевтический журнал, т. 8, но. 1, с. 24, Фев. 2009. (V. F. Khohlov, P. V. Izhevskij, V. N. Kulakov et al., “Pharmacokinetic evaluation of drugs for binary radiation therapy as part of a screening study,” Russian Biotherapeutic Journal, vol. 8, no. 1, p. 24, Feb. 2009.)
    Retrieved from: http://www.rbjournal.ru/upload/iblock/c6c/c6c892885f348ef217de88b1fda14227.pdf
    Retrieved on: Jan. 12, 2017
  12. С. Е. Ульяненко, А. Н. Соловьев, В. М. Литяев, В. В. Федоров, С. Н. Корякин, “Математическое моделирование фотон- и протон-захватной терапии с использованием препаратов золота,” Медицинская радиология и радиационная безопасность, т. 61, но. 5, с. 59-64, 2016. (S. E. Ulyanenko, A. N. Solovev, V. M. Lityaev, V. V. Fedorov, S. N. Koryakin, “Monte-Carlo Simulation of Photon and Proton Capture Therapy,” Medical radiology and radiation safety, vol. 61, no. 5, pp. 59 – 64, 2016.)
  13. С. Н. Корякин, С. Е. Ульяненко, Е. В. Исаева и др., “Оценка цитотоксичности и накопления в опухоли золотосодержащих соединений на основе гиалуроновой кислоты,” Бюл. Нац. рад-эпид. рег. «Радиация и риск», т. 24, но. 3, с. 115 – 124, 2015. (S. N. Koryakin, S. E. Ulyanenko, E. V. Isaeva et al., “Evaluation of cytotoxicity and tumor accumulation of gold compounds on the basis of hyaluronic acid,” Bul. Nat Rad-Epid. Reg. “Radiation and Risk”, vol. 24, no. 3, pp. 115 – 124, 2015.)
    Retrieved from: https://cyberleninka.ru/article/v/otsenka-tsitotoksichnosti-i-nakopleniya-v

    Retrieved on: Jan. 12, 2017


Evgeny Beketov, Elena Isaeva, Egor Malakhov, Nadezhda Nasedkina, Sergey Koryakin, Stepan Ulyanenko, Alex Solovev, Anatoly Lychagin

Pages: 90-93

DOI: 10.21175/RadJ.2017.02.020

Received: 10 FEB 2017, Received revised: 21 APR 2017, Accepted: 22 MAY 2017, Published online: 28 OCT 2017

The study was carried out using the system of accelerators (I-100, U-1.5, U-70). Ultra-precise equipment to position biological objects was applied. The dependency of melanoma B-16 cells survival on the dose of 12C ion irradiation was obtained. The carbon beam was studied within three main ranges: Bragg peak, areas before and after the peak. Dose dependence in the peak and in the area before the peak had a distinct linear pattern. In the distal part of the Bragg peak, linear-quadratic dependence was observed. Carbon ions RBE were 4.5, 1.7 and 2.4 for the peak, the areas before and after the peak, respectively.
  1. D. Habermehl et al., “The relative biological effectiveness for carbon and oxygen ion beams using the raster-scanning technique in hepatocellular carcinoma cell lines,” PLoS One, vol. 9, no. 12, p. e113591, Dec. 2014.
    DOI: 10.1371/journal.pone.0113591
    PMid: 25460352
    PMCid: PMC4252049
  2. H. Tsujii et al., “Clinical advantages of carbon-ion radiotherapy,” New Journal of Physics, vol. 10, no. 7, pp. 075009-1 – 075009-16, Jul. 2008.
    DOI: 10.1088/1367-2630/10/7/075009
  3. М. М. Кац, “Сравнение биологического действия пучков протонов и ионов 12C при лучевой терапии,” Медицинская физика, т. 2014, № 4, c. 22-25, 2014. (M. M. Kats, “Comparison of Biological impact of proton and 12C ion beams in radiation treatement,” Medical Physics, vol. 2014, no. 4, pp. 22-25, 2014.)
    Retrieved from: http://medphys.amphr.ru/_private/DB/64_22.pdf
    Retrieved on: Jan. 19, 2017.
  4. Н. В. Марков, “Дозиметрия импульсных пучков тяжелых ионов для радиобиологических исследований на ускорительном комплексе ИТЭФ–ТВН,” Дис. к.ф.-м.н., НИЦ «Курчатовский институт» ФГБУ «ГНЦ РФ ИТЭФ», Российская Федерация, 2014. (N. V. Markov, “Dosimetry of pulse beams of heavy ions for radiobiology researches at the ITEP-TVN accelerator complex,” Ph.D. Dissertation, Institute for Theoretical and Experimental Physics, Russia, 2014.)
    Retrieved from: http://www.itep.ru/science/dis/candidate_dissertation/detail.php?ID=223
    Retrieved on: Feb. 8, 2017
  5. T. Kanai et al., “Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy,” International Journal of Radiation Oncology, Biology, Physics, vol. 44, no. 1, pp. 201-210, Apr. 1999.
    DOI: 10.1016/S0360-3016(98)00544-6
  6. K. Oonishi et al., “Different effects of carbon ion beams and X-rays on clonogenic survival and DNA repair in human pancreatic cancer stem-like cells,” Radiotherapy and Oncology, vol. 105, no. 2, pp. 258-265, Nov. 2012.
    DOI: 10.1016/j.radonc.2012.08.009
    PMid: 23017870
  7. H. Tsujii et al. “Clinical results of carbon ion radiotherapy at NIRS,” Journal of Radiation Research, vol. 48, pp. A1-A13, Mar. 2007.
    DOI: 10.1269/jrr.48.A1
  8. S. Bentzen et al., “Does variation in the in vitro cellular radiosensitivity explain the shallow clinical dose-control curve for malignant melanoma?” Int. J. Radiat. Biol., vol. 57, no. 1, pp. 117-126, 1990.
    DOI: 10.1080/09553009014550391
    PMid: 1967283
  9. R. Hill et al., “The lung-colony assay: extension to the Lewis lung tumour and the B16 melanoma--radiosensitivity of B16 melanoma cells,” Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., vol. 27 no. 4, pp. 377-387, Mar. 1975.
    DOI: 10.1080/09553007514550351
    PMid: 1095507
  10. K. Guda et al., “An improved method for staining cell colonies in clonogenic assays,” Cytotechnology, vol. 54, no. 2, pp. 85-88, Jun. 2007.
    DOI: 10.1007/s10616-007-9083-2
    PMid: 19003022
    PMCid: PMC2267497
  11. Y. M. Antipov et al., “Transversally-flat dose field formation and primary radiobiological exercises with the carbon beam extracted from the U-70 synchrotron,” Instruments and Experimental Techniques, vol. 58, no. 4, pp. 552-561, Jul. 2015.
    DOI: 10.1134/S0020441215040016
  12. R Core Team, R Foundation for Statistical Computing, Vienna, Austria, 2016, R: A Language and Environment for Statistical Computing ver. 3.2.3.
    Retrieved from: https://cran.r-project.org/src/base/R-3/
    Retrieved on: Feb. 8, 2017.
  13. E. E. Бекетов и соавт., “Зависимость эффективности одновременного воздействия гамма-квантов и нейтронов с энергией 14 МэВ от вклада плотноионизирующего компонента,” Радиация и риск, т. 21, № 3, с. 82-90, 2012. (E. E. Beketov et al., “Dependence of simultaneous exposure of gamma-rays and neutrons with energy 14 MeV effectiveness on high-LET component contribution,” Radiation and Risk, vol. 21, no. 3, pp. 82-90, 2012.)
  14. E. V. Isaeva et al., “A comparative study of the biological effectiveness of 14-MeV neutron pulse and continuous radiation using mouse melanoma B-16 cells,” Radiation Protection Dosimetry, vol. 161, no. 1-4, pp. 478–482, Oct. 2014.
    DOI: 10.1093/rpd/nct247
    PMid: 24101654
Radiation Effects


O. Shpotyuk, M. Shpotyuk, S. Ubizskii

Pages: 94-100

DOI: 10.21175/RadJ.2017.02.021

Received: 14 FEB 2017, Received revised: 26 APR 2017, Accepted: 3 JUL 2017, Published online: 28 OCT 2017

A variety of methodological resolutions suitable to identify unambiguously radiation-induced effects in chalcogenide glassy semiconductors is analyzed in details. The radiation-optical effects in chalcogenide glasses are comprehensively considered as resulting from both intrinsic and impurity-related redistribution of covalent chemical bonds known as destruction-polymerization transformations. Two types of experimental measuring protocols are utilized to study the radiation-induced effects within ex-situ direct or in-situ backward chronology, the latter being more adequate for correct testing of competitive inputs from both channels of destruction-polymerization transformations. A critical assessment is given on misleading speculations of some authors ignoring intrinsic radiation-structural transformations in glassy As2S3 in view of accompanying oxidation and thermally-induced physical-ageing processes. In final, the As2S3 glass is nominated to be the best model object among a wide group of chalcogenide glassy semiconductors revealing the highest sensitivity to radiation-induced metastability.
  1. O. I. Shpotyuk, “Radiation-induced effects in chalcogenide vitreous semiconductors,” in Semiconducting Chalcogenide Glass I. Glass Formation, Structure, and Stimulated Transformations in Chalcogenide Glasses, R. Fairman, B. Ushkov, Eds., Cambridge (MA), USA: Elsevier Academic Press, 2004, ch. 6, pp. 215 – 260.
    DOI: 10.1016/S0080-8784(04)80048-6
  2. O. Shpotyuk, R. Golovchak, A. Kozdras, “Physical ageing of chalcogenide Glasses,” in Chalcogenide Glasses: Preparation, Properties and Applications, J. L. Adam, X. Zhang, Eds., Sawston, UK: Woodhead Publishing, 2013, ch. 13, pp. 209 – 264.
    DOI: 10.1533/9780857093561.1.209
  3. O. I. Shpotyuk et al., “Compositional trends in radiation-optical properties of chalcogenide glasses,” J. Optoelectron. Adv. Mater., vol. 4, no. 3, pp. 751 – 762, Sep. 2002.
    Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
    Retrieved on: Jan. 15, 2017
  4. O. I. Shpotyuk, “Induced effects in chalcogenide glassy semiconductors and destruction-polymerization transformations concept,” Latv. J. Phys. Techn. Sci., vol. 4, pp. 32 – 43, 1993.
  5. O. Shpotyuk et al., “Destruction-polymerization transformations as a source of radiation-induced extended defects in chalcogenide glassy semiconductors,” Phys. Stat. Sol. C, vol. 10, no. 1, pp. 125 – 128, Jan. 2013.
    DOI: 10.1002/pssc.201200407
  6. Ya. Shpotyuk et al., “Radiation-induced effects in chalcogenide amorphous semiconductors: On the role of destruction-polymerization transformations,” J. Non-Crystr. Sol., vol. 377, pp. 46 – 48, Oct. 2013.
    DOI: 10.1016/j.jnoncrysol.2013.01.054
  7. M. V. Shpotyuk et al., “On the origin of radiation-induced metastability in vitreous chalcogenide semiconductors: The role of intrinsic and impurity-related destruction-polymerization transformations,” Semicond. Phys. Quant. Electron. Optoelectron., vol. 18, no. 1, pp. 90 – 96, Feb. 2015.
    DOI: 10.15407/spqeo18.01.090
  8. O. I. Shpotyuk, “Mechanism of radiation-structural transformations in amorphous As2S3,Rad. Effects and Defects in Solids, vol. 132, no. 4, pp. 393 – 396, 1994.
    DOI: 10.1080/10420159408219992
  9. O. I. Shpotyuk et al., “Radiation-stimulated processes in vitreous arsenic trisulphide,” J. Non-Cryst. Solids, vol. 176, no. 1, pp. 45 – 50, Oct. 1994.
    DOI: 10.1016/0022-3093(94)90209-7
  10. D. Zhao et al., “Gamma-ray-induced multi-effect on properties of chalcogenide glasses,” J. Am. Ceram. Soc., vol. 89, no. 11, pp. 3582 – 3584, Nov. 2006.
    DOI: 10.1111/j.1551-2916.2006.01268.x
  11. F. Xia et al., “Gamma ray irradiation induced optical band gap variations in chalcogenide glasses,” Nucl. Instr. Meth. Phys. Res. B, vol. 234, no. 4, pp. 525 – 532, Jul. 2005.
    DOI: 10.1016/j.nimb.2005.02.019
  12. F. Xia et al., “g-ray irradiation induced multiple effects on Ge-as-Sde chalcogenide glasses,” J. Non-Cryst. Solids,vol. 354, no. 12-13, pp. 1365 – 1368, Feb. 2008.
    DOI: 10.1016/j.noncrystsol.2006.11.049
  13. W. Shen et al., “Gamma-ray irradiation resistance of silver doped GeS2-Ga2S3-AgI chalcogenide glasses,” Nucl. Instr. Meth. Phys. Res. B,vol. 329, pp. 48 – 51, Jun. 2014.
    DOI: 10.1016/j.nimb.2014.02.119
  14. W. Shen et al., “Controllable gamma-ray sensitivity of Ag-doped and/or AgI-modified Ge-Ga-S glasses,” Nucl. Instr. Meth. Phys. Res. B,vol. 280, pp. 36 – 38, Jun. 2012.
    DOI: 10.1016/j.nimb.2012.02.034
  15. O. A. Lafi et al., “The effect of gamma irradiation on glass transition temperature and thermal stability of Se96Sn4 chalcogenide glass,” Rad. Phys. Chem.,vol. 79, no. 1, pp. 104 - 108, Jan. 2010.
    DOI: 10.1016/j.radphyschem.2009.08.005
  16. M. A. Al-Ewaisi et al., “Effect of gamma irradiation on some electrical properties and optical band gap of bulk Se92Sn8 chalcogenide glass,” Physica B,vol. 405, no. 12, pp. 2643 – 2647, Jun. 2010.
    DOI: 10.1016/j.physb.2010.03.045
  17. S. K. Troipathi, “Irradiation induced changes in semiconducting thin films,” Defects Diffusion Forum,vol. 341, pp. 181 – 219, Jul. 2013.
    DOI: 10.4028/www.scientific.net/DDF.341.181
  18. S. M. El-Sayed, “Electron beam and gamma irradiation effects on amorphous chalcogenide SbSe2.5 films,” Nucl. Instr. Meth. Phys. Res. B,vol. 225, no. 4, pp. 535 – 543, Oct. 2004.
    DOI: 10.1016/j.nimb.2004.05.033
  19. D. Sarkar et al., “Influence of electron beam irradiation on structural and optical properties of thermally evaporated GeTe thin films,” Rad. Phys. Chem.,vol. 98, pp. 64 – 68, May 2014.
    DOI: 10.1016/j.radphyschem.2014.01.016
  20. M. R. Balboul, “Optical effects induced by gamma and UV irradiation in chalcogenide glass,” Rad. Measurements,vol. 43, no. 8, pp. 1360 – 1364, Sep. 2008.
    DOI: 10.1016/j.radmeas.2008.03.007
  21. M. R. Balboul et al., “Effect of Co60 g-irradiation on the optical properties of thin films from the system GeSe3-Sb2Se3-ZnSe,” Rad. Phys. Chem.,vol. 81, no. 12, pp. 1848 – 1855, Dec. 2012.
    DOI: 10.1016/j.radphyschem.2012.08.007
  22. G. A. N. Amin et al., “Optical response of gamma irradiated arsenic selenide thin films,” Mater. Sci. Semicond. Processing,vol. 15, no. 4, pp. 455 – 459, Aug. 2012.
    DOI: 10.1016/j.mssp.2012.03.017
  23. G. A. N. Amin et al., “Study of gamma-radiation-induced optical effects in Ge-Se-Cd for possible industrial dosimetric applications,” Rad. Phys. Chem.,vol. 72, no. 4, pp. 419 – 422, Mar. 2005.
    DOI: 10.1016/j.radphyschem.2004.03.013
  24. M. Shpotyuk et al., “Compositional trends of g-induced optical changes observed in chalcogenide glasses of binary As-S system,” J. Non-Cryst. Solids, vol. 386, pp. 95 – 99, Feb. 2014.
    DOI: 10.1016/j.jnoncrysol.2013.12.001
  25. O. Shpotyuk et al., “Structural-relaxation phenomena in As-S glasses as probed by combuned PAL/DBAR technique,” Mat. Chem. Phys., vol. 155, pp. 76 – 82, Apr. 2015.
    DOI: 10.1016/j.matchemphys.2015.02.001
  26. M. Shpotyuk et al., “FSDP-related correlations in g-irradiated chalcogenide semiconductor glasses: The case of glassy arsenic trisulphide g-As2S3 revised,” J. Phys. Chem. Sol., vol. 74, no. 12, pp. 1721 – 1725, Dec. 2013.
    DOI: 10.1016/j.jpcs.2013.06.016
  27. M. Shpotyuk et al., “Surface oxidation in glassy arsenic trisulphide induced by high-energy g-irradiation,” Rad. Phys. Chem., vol. 97, pp. 341 – 345, Apr. 2014.
    DOI: 10.1016/j.radphyschem.2013.12.021
  28. V. Balitska et al., “Post-irradiation relaxation in vitreous arsenic/antimony trisulphides,” J. Non-Cryst. Solids, vol. 357, no. 2, pp. 487 – 489, Jan. 2011.
    DOI: 10.1016/j.jnoncrysol.2010.06.052
  29. J. S. Berkes et al., “Photodecomposition of amorphous As2Se3 and As2S3,” J. Appl. Phys., vol. 42, pp. 4908 – 4916, 1971.
    DOI: 10.1063/1.1659873
  30. S. A. Keneman et al., “Evaporated films of arsenic trisulfide: Physical model of effects of light exposure and heat cycling,” J. Appl. Phys., vol. 49, pp. 4663 – 4673, 1978.
    DOI: 10.1063/1.325555
  31. M. Shpotyuk et al., “Surface oxidation in glassy arsenic trisulphide induced by high-energy g-irradiation,” Rad. Phys. Chem., vol. 97, pp. 341 – 345, Apr. 2014.
    DOI: 0.1016/j.radphyschem.2013.12.021
  32. J. S. Sanghera et al., “Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared,” J. Appl. Phys., vol. 75, no. 10, pp. 4885 – 4891, Jan. 1994.
    DOI: 10.1063/1.355774
  33. S. Lovas et al., “The room temperature visible photoluminescence in g-As2S3 and Ge-based glasses,” Sci. Bull. Uzhgorod Univ. Ser. Fiz., vol. 34, pp. 54 – 58, 2013.
    Retrieved from: http://dspace.uzhnu.edu.ua/jspui/handle/lib/2625
    Retrieved on: Jan. 10, 2017
  34. T. S. Kavetskyy and A. L. Stepanov, “Effects of gamma-irradiation and ion implantation in chalcogenide glasses,” in Glass Nanocomposites: Synthesis, Properties and Applications, B. Karmakar, K. Rademann, A. L. Stepanov, Eds., Cambridge (MA), USA: Elsevier Acad. Press, 2016, ch. 14, pp. 341 – 358
    DOI: 10.1016/B978-0-323-39309-6.00014-6
  35. T. S. Kavetskyy, “Long-term radiation-induced optical darkening effects in chalcogenide glasses,” Semicond. Phys. Quantum Electron. Optoelectron., vol. 19, no. 4, pp. 395 – 398, 2016.
    DOI: 10.15407/spqeo19.04.395
  36. O. I. Shpotyuk et al., “Radiation optical effects in As2S3-GeS2 semiconducting glasses,” Phys. Chem. Glasses, vol. 42, no. 2, pp. 95 – 98, Apr. 2001.
  37. E. Skordeva et al., “g-induced changes in Ge-As-S glasses,” J. Optoelectron. Adv. Mater., vol. 2, pp. 259 – 266, 2000.
    Retrieved from: https://www.researchgate.net/publication/242238293G-Induced_Changes_in_Ge-As-S_Glasses
    Retrieved on: Jan. 10, 2017
  38. V. Balitska et al., “On the instability effects in radiation-sensitive chalcogenide glasses,” Rad. Measurements, vol. 42, no. 4-5, pp. 941 – 943, Apr-May 2007.
    DOI: 10.1016/j.radmeas.2007.02.045
  39. V. Balitska et al., “Dynamic radiation-induced effects in chalcogenide vitreous compounds,” J. Non-Cryst. Solids, vol. 287, no. 1-3, pp. 216 – 221, Jul. 2001.
    DOI: 10.1016/S0022-3093(01)00635-4
Radiation in Medicine


M. Vadrucci, A. Ampollini, F. Borgognoni, P. Nenzi, L. Picardi, C. Ronsivalle, V. Surrenti, E. Trinca

Pages: 101-107

DOI: 10.21175/RadJ.2017.02.022

Received: 15 FEB 2017, Received revised: 26 APR 2017, Accepted: 22 JUL 2017, Published online: 28 OCT 2017

A proton linear accelerator devoted to proton therapy application, is under construction in the “Particle Accelerators and Medical Applications Laboratory” at the ENEA Frascati research center in the framework of the TOP (Terapia Oncologica con Protoni) – IMPLART (Intensity Modulated Proton Linear Accelerator for RadioTherapy) project funded by the regional government of Lazio in Italy. The proton linac is composed by a modular sequence of RF linear accelerators designed to reach the energy of 150 MeV. The beam features, particularly useful for very conformal irradiation of tumours in complex anatomical regions, can be likewise translated to other situations. Therefore, during the process of commissioning of the TOP-IMPLART accelerator, the beam has been also made available as a versatile proton source for ancillary experiments in the framework of other projects. Presently, indeed, the maximum TOP-IMPLART beam energy is 35 MeV and this section delivers a 3 usec pulsed beam at the maximum repetition frequency of 25 Hz with a variable charge in each pulse in the range 5-100 pC. This beam is used for pilot experiments to simulate cosmic conditions on the ground and PIXE (Particle Induced X-ray Emission) analysis for the determination of elemental composition of archeological and old painting samples. This work presents an overview of these activities, describing in detail the different set up adopted to perform the tests and the main achieved results.
  1. Particle therapy facilities in operation, Particle Therapy Co-Operative Group, Villigen, Switzerland, 2017.
    Retrieved from: https://www.ptcog.ch/index.php/facilities-in-operation
    Retrieved on: Feb. 5, 2017
  2. G. Messina, U. Bizzarri, C. Ronsivalle et al., “The activity on accelerators at the ENEA Frascati Center:status and perspectives,” in Proc. I European Particle Accelerators Conference (EPAC88), Rome, Italy, 1988, pp. 1477 – 1479
    Retrieved from: http://accelconf.web.cern.ch/AccelConf/e88/PDF/EPAC1988_1477.PDF
    Retrieved on: Feb. 5, 2017
  3. L. Picardi, G. Messina, C. Ronsivalle, A. Vignati, “The activity on linear accelerators at the ENEA Frascati Center,” in Proc. 1992 Linear Accelerator Conference, Ottawa, Canada, 1992, pp. 510 – 512
    Retrieved from: http://accelconf.web.cern.ch/AccelConf/l92/papers/tu4-69.pdf
    Retrieved on: Feb. 5, 2017
  4. L. Picardi, C. Ronsivalle et al., “The italian IORT project,” in Proc. EPAC 2000 Conference, Vienna, Austria, 2000, pp. 2545 – 2547
    Retrieved from: http://accelconf.web.cern.ch/AccelConf/e00/PAPERS/WEP5B04.pdf
    Retrieved on: Feb. 5, 2017
  5. C. Ronsivalle et al., “The TOP-IMPLART Project,” Eur. Phys. J. Plus,vol. 126, no. 68, pp. 166 – 168, Jul. 2011.
    DOI: 10.1140/epjp/i2011-11068-x
  6. W. D. Kilpatric, “Criterion for Vacuum Sparking designed to include both rf and dc,” Rev. Sci. Instrum., vol. 28, no. 10, p. 824, 1957.
    DOI: 10.1063/1.1715731
  7. C. Ronsivalle et al., “The TOP-IMPLART linac: machine status and experimental activity,” in Proc. IPAC17, Copenhagen, Denmark, 2017, pp. 4669 – 4672
    Retrieved from: http://accelconf.web.cern.ch/AccelConf/ipac2017/papers/thpva090.pdf
    Retrieved on: Aug. 5, 2017
  8. M. Vadrucci et al., “First beam characterization of the TOP-IMPLART proton linear accelerator for cancer radiotherapy,” in Proc. 55th Annual Meeting for the PTCOG 2016, Prague, Czech Republic, 2016, pp. 201 – 202
    DOI: 10.14338/IJPT.16-PTCOG-1.1
  9. M. Vadrucci, P. Ferrari et al., “Preliminary characterization of the neutron field in TOP-IMPLART proton therapy facility,” in presented at the 56th Annual Meeting for the PTCOG, Kanagawa, Japan, 2017
    DOI: 10.14338/IJPT.17-PTCOG-1.1
  10. P. Ferrari, M. Vadrucci et al., “Preliminary study of neutron field in TOP-IMPLART proton therapy beam,” to be published in Proc. NEUDOS 2017, Kraków, Poland, 2017
  11. M. Vadrucci et al., “Analysis of Roman Imperial coins by combined PIXE, m-XRF and LIBS techniques,” Microchem. J., no. spec. issue, to be published.
  12. F. Novelli, M. Vadrucci et al., “Effects of in vivo proton irradiation on mouse spleen cells,” Radiation and Applications vol. 2, no. 3, to be published.
  13. M. Vadrucci et al., “A new small-footprint external-beam PIXE facility for cultural heritage applications using pulsed proton beams,” Nuclear Instruments and Methods in Physics B, to be published.
  14. M. Vadrucci et al., “The low-energy proton beam for radiobiology experiments at the TOP-IMPLART facility,” Biophysics and Bioengineering Letters, vol. 8, no. 1, May 2015.
    Retrieved from: http://ojs.uniroma1.it/index.php/CISB-BBL/article/view/13287/13086
    Retrieved on: Aug. 5, 2017
  15. M. Vadrucci et al., “Mimicking extreme astrophysical environments: first trials of irradiation of plant tissues with the TOP-IMPLART protontherapy accelerator,” presented at the Agrospace 2016 Conferenece, Sperlonga, Italy, 2016
  16. M. Vadrucci et al., “Diagnostics methods for the medium energy proton beam extracted by the TOP IMPLART linear accelerator,” in Proc. IPAC 2017, Copenhagen, Denmark, 2017, pp. 4673 – 4675
    Retrieved from: http://accelconf.web.cern.ch/AccelConf/ipac2017/papers/thpva091.pdf
    Retrieved on: Aug. 5, 2017
  17. E. Cisbani et al., “Micro pattern ionization chamber with adaptive amplifiers as dose delivery monitor for therapeutic proton LINAC,” in Proc. IBIC 2016, Barcelona, Spain, 2016, pp. 464 – 467
    Retrieved from: http://accelconf.web.cern.ch/AccelConf/ibic2016/papers/tupg51.pdf
    Retrieved on: Aug. 5, 2017
  18. C. De Angelis et al., “Characterization of a 27 MeV proton beam linear accelerator,” to be published in Proc. NEUDOS 2017, Kraków, Poland, 2017
  19. M. D. Falco et al., “Characterization of a cable-free system based on p-type MOSFET detectors for “in vivo” entrance skin dose measurements in interventional radiology,” Med Phys, vol. 39, no. 8, pp. 4866 – 4874, Jul. 2012.
    DOI: 10.1118/1.4736806
    PMid: 22894413
  20. M. Vadrucci et al., “Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and 60Co γ-rays,” Med. Phys., vol. 42, no. 8, pp. 4678–84, Aug. 2015.
    DOI: 10.1118/1.4926558
    PMid: 26233195
  21. ENEA-COBRA project, Development and dissemination of methods, advanced technologies and tools for the conservation of cultural heritage, based on application of radiation, ENEA, Rome, Italy
    Retrieved from: http://cobra.enea.it/english
    Retrieved on: Jul. 10, 2017
  22. M. Vadrucci et al, “Proton irradiations of micro-tom red hairy roots to mimic space conditions,” in Proc. IPAC2015, Richmond (VA), USA, 2015,pp. 2249 – 2252
    Retrieved from: http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/tupwi005.pdf
    Retrieved from: Aug. 5, 2017
  23. S. Massa et al., “Tomato hairy root cultures as a platform for the bioproduction of valuable molecules and as a tool to test extreme astrophysical conditions,” presented at the Agrospace 2016 Conferenece, Sperlonga, Italy, 2016


Jussi Paatero, Blagorodka Veleva, Elena Hristova, Juha Hatakka

Pages: 108-114

DOI: 10.21175/RadJ.2017.02.023

Received: 14 FEB 2017, Received revised: 4 MAY 2017, Accepted: 3 JUL 2017, Published online: 28 OCT 2017

Airborne lead-210 is a useful tracer for studying air mass origin and transport. 210Pb is produced in the atmosphere by the decay of the radioactive noble gas 222Rn, emanating after 226Ra decay from the earth crust. The results obtained for 210Pb concentration in total suspended particulate (TSP) display seasonal pattern with maximum in the summer-autumn period. The TSP filters are collected within the scope of atmospheric radioactivity monitoring in NIMH, Bulgaria and were measured initially for short and long lived beta radionuclides. The methodology developed in FMI, Finland, based on gross alpha counting of 210Po- the daughter of the combined aerosol filters samples collected in Sofia during the period 2001 – 2003 and 2006-2007, is applied. The first results for 210Pb in particulate matter, fraction below 10 μm (PM10), in February 2012 in Sofia are presented. The alpha counting methodology was successfully applied for daily PM10 quartz filters with the counting uncertainty value of ≤20%. Lead-210 daily concentration is compared to the PM10 mass concentration and elemental lead concentration, determined by EDXRF technique. The comparison between 210Pb, elemental lead and PM10 mass concentration reveals a different time variation for days with cyclonic weather and mass transport from south-west and an anticyclone episode with increasing PM10, lead-210 and lead concentrations from day to day. An increase in the PM10/210Pb ratio indicates local sources of the particulate mass.
  1. “Sources, effects and risks of ionizing radiation: Annex A: Exposures from natural sources of radiation,” United Nations Scientific Committee on the Effects of Atomic radiation, New York (NY), USA, Rep. 45(A/43/45), 1988.
    Retrieved from: http://www.unscear.org/docs/publications/1988/UNSCEAR_1988_Annex-A.pdf
    Retrieved on: Feb. 23, 2017
  2. M. Baskaran, “Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a Review,” J. Environ. Radioact., vol. 102, no. 5, pp. 500 – 513, May 2011.
    DOI: 10.1016/j.jenvrad.2010.10.007
    PMid: 21093126
  3. J. Paatero et al., “Lead-210 concentration in the air at Mt. Zeppelin, Ny-Ålesund, Svalbard,” Phys. Chem. Earth, vol. 28, no. 28-32, pp. 1175 – 1180, 2003.
    DOI: 10.1016/j.pce.2003.08.050
  4. R. L. Lozano et al., “Depositional fluxes and concentrations of 7Be and 210Pb in bulk precipitation and aerosols at the interface of Atlantic and Mediterranean coasts in Spain,” J. Geophys. Res., vol. 116, no. D18, pp. D18213-1 – D18213-14, Sep. 2011.
    DOI: 10.1029/2011JD015675
  5. N. A. Marley et al., “Measurement of 210Pb, 210Po, and 210Bi in Size-Fractionated Atmospheric Aerosols: An Estimate of Fine-Awrosol Residence Times,” Aerosol sci. and Technol., vol. 32, no. 6, pp. 569 – 583, Jun. 2000.
    DOI: 10.1080/027868200303489
  6. “1st international expert meeting on sources and measurements of natural radionuclides applied to climate and air quality studies,” World Meteorological Organization Global Atmosphere Watch, Geneva, Switzerland, Rep. 155, 2004.
    Retrieved from: https://library.wmo.int/pmb_ged/wmo-td_1201.pdf
    Retrieved on: Feb. 17, 2017
  7. J. Paatero, B. Veleva, J. Hatakka, “Long-Term Trends of Lead-210 Concentrations in the Ground-Level Air in Finland and Bulgaria,” in Global Environmental Change: Challenges to Science and Society in Southeastern Europe, V. Alexandrov, M. Felix Gajdusek, G. Knight, A. Yotova, Eds., Berlin, Germany: Springer Science, 2010, ch. 19, pp. 229 – 234
    DOI: 10.1007/978-90-481-8695-2_19
  8. Handbook of radioactivity analyses, M. F. L’Annunziata, Ed., 3rd ed., Cambridge (MA), USA: Academic Press, 2012.
    DOI: 10.1016/B978-0-12-384873-4.00001-3
  9. B. Veleva, E. Hristova, E. Nikolova, M. Kolarova, R. Valcheva, “Elemental composition of air particulate (PM10) in Sofia by EDXRF techniques,” Journal of Chemical Technology and Metallurgy, vol. 49, no. 2, pp. 163 – 169, 2014.
    Retrieved from: http://dl.uctm.edu/journal/node/j2014-2/8.%20E.%20Hristova_163-169.pdf
    Retrieved on: Feb. 17, 2017
  10. R. Mattsson, J. Paatero and J. Hatakka, “Automatic Alpha/Beta Analyser for Air Filter Samples - Absolute Determination of Radon Progeny by Pseudo-coincidence Techniques,” Radiat. Prot. Dosim., vol. 63, no. 2, pp. 133 – 139, Jan. 1996.
    DOI: 10.1093/oxfordjournals.rpd.a031520
  11. J. Paatero et al., “Airborne total beta activity in Finland and Bulgaria 1961-2000,” in Book of Extended Synopses, Vienna, Austria: International Atomic Energy Agency, 2007, pp. 267-268
  12. B. Veleva, J. Paatero, J. Hatakka, “Variation of the total beta activity in the surface air layer in Finland and Bulgaria during the last decades,” Bul. J. Meteo. & Hydro., vol. 16, no. 1, pp. 62 – 67, 2011.
  13. J. Paatero, B. Veleva, J. Hatakka, E. Hristova, “Atmospheric radioactivity in Bulgaria and Finland following the Fukushima nuclear accident,” in Proc. BALWOIS Int. Conference on water, climate and environment, Ohrid, Republic of Macedonia, 2012.
    Retrieved from: http://balwois.com/wp-content/uploads/old_proc/242.pdf
    Retrieved on: Feb. 17, 2017
  14. E. Brattich et al., “Processes controlling the seasonal variations in 210Pb and 7Be at the Mt.Cimone WMO-GAW global station, Italy: a model analysis,” Atmos. Chem. Physics, vol. 17, pp. 1061 – 1080, Jan. 2017.
    DOI: 10.5194/acp-17-1061-2017
  15. M. M. Janković, et al., “Temporal concentration changes of beryllium-7 and lead-210 in ground level air in Serbia,” Hem. Ind., vol. 68, no. 1, pp. 83 – 88, 2014.
    DOI: 10.2298/HEMIND130320031J
  16. A. S. Likuku, “Factors influencing ambient concentration of 210Pb and 7Be over the city of Edinburg (55.9 N, 03.2 W),” J. Environ. Radioact., vol. 87, no. 3, pp. 289 - 304, Feb. 2006.
    DOI: 10.1016/j.jenvrad.2005.12.006
    PMid: 16487632
  17. J. Paatero, J. Hatakka, R. Mattsson and Y. Viisanen, “Analysis of Daily Lead-210 Air Concentrations in Finland, 1967-1996,” Radiat. Prot. Dosim., vol. 77, no. 3, pp. 191 – 198, Jun. 1998.
    DOI: 10.1093/oxfordjournals.rpd.a032310
  18. J. Paatero et al., “Long-term Variations of Lead-210 Concentrations in Ground-Level Air in Finland: Effects of the North-Atlantic Oscillation,” in Proc. EUROTRAC-2 Symposium 2000, Berlin, Germany, 2000, pp. 322 - 324
  19. R. Winkler and G. Rosner, “Seasonal and long-term variation of 210Pb concentration in air, atmospheric deposition rate and total deposition velocity in south Germany,” Sci. Total Environ., vol. 263, no. 1-3, pp. 57 – 68, Dec. 2000.
    DOI: 10.1016/S0048-9697(00)00666-5
  20. Министерство на околната среда и водите. (2016). Национален доклад за състоянието и опазването на околната среда. (Ministry of Environment and Water. (2016). National Report on the Status and Protection of the Environment in the Republic of Bulgaria.)
    Retrieved from: http://eea.government.bg/bg/soer/2014/soer-bg-2014.pdf
    Retrieved on: Feb. 17, 2017
  21. B. Veleva et al., “Statistical evaluation of elemental composition data of PM10 air particulate in Sofia,” Intern. J. of Environment and Pollution, vol. 57, no. 3-4, pp. 175 – 188, 2015.
    DOI: 10.1504/IJEP.2015.074502
  22. K. Ram and M. M. Sarin, “Atmospheric 210Pb, 210Po and 210Po/210Pb activity ratio in urban aerosols: temporal variability and impact of biomass burning emission,” Tellus B, vol. 64, no. 1, pp. 17513-1 – 17513-11, Mar. 2012.
    DOI: 10.3402/tellusb.v64i0.17513
  23. E. Bratticha, M. A. Hernández-Ceballosb, J. A. G. Orzac, J. P. Bolívard, L. Tosittia, “The western Mediterranean basin as an aged aerosols reservoir. Insights from an old-fashioned but efficient radiotracer,” Atmospheric Environment, vol. 141, pp. 481 – 493, Sep. 2016.
    DOI: 10.1016/j.atmosenv.2016.07.022
  24. R. Mattsson and T. Jaakkola, “An analysis of Helsinki air 1962 to 1977 based on trace metals and radionuclides,” Geophysica, vol. 16, no. 1, pp. 1 – 42, 1979.
    Retrieved from: http://www.geophysica.fi/pdf/geophysica_1979_16_1_001_mattsson.pdf
    Retrieved on: Feb. 17, 2017
  25. B. R. R. Persson, E. Holm, K. Lidén, “Radiolead (210Pb) and stable lead in the lichen Cladonia Alpestris,” Oikos, vol. 25, no. 2, pp. 140 – 147, 1974.
    DOI: 10.2307/3543635
  26. P. Kauranen, J. K. Miettinen, “Specific Activity of 210Pb in the Environment,” Intern. J. Environ. Anal. Chem., vol. 3, no. 4, pp. 307 – 316, 1974.
    DOI: 10.1080/03067317408071091
    PMid: 4443155
  27. J. Paatero et al., “Deposition of atmospheric 210Pb and total beta activity in Finland,” Journal of Radioanalytical and Nuclear Chemistry, vol. 303, no. 3, pp. 2413 – 2420, Mar. 2015.
    DOI: 10.1007/s10967-014-3785-7
Radon and Thoron


Janja Vaupotič, Mateja Bezek, Ivan Kobal

Pages: 115-117

DOI: 10.21175/RadJ.2017.02.024

Received: 12 FEB 2017, Received revised: 4 MAY 2017, Accepted: 20 JUN 2017, Published online: 28 OCT 2017

An air cleaner was installed in a room with elevated radon activity concentration, and the following parameters have been monitored: activity concentrations of 222Rn (Rn) and its short-lived products (RnP), degree of equilibrium between Rn and RnP (F), fraction of unattached RnP (fun), and the number concentration and size distribution of aerosol particles (5–530 nm). Several hours of filtration removed the >10 nm particles almost completely, thus increasing the contribution of the <10 nm particles, associated with unattached RnP. Consequently, fun was substantially augmented with a concomitant decrease inF.
  1. J. Porstendörfer, “Radon: measurements related to dose,” Environ. Int., vol. 22, no. 1, pp. S563–S583, Jun. 1996.
    DOI: 10.1016/S0160-4120(96)00158-4
  2. J. D. Harrisson and J. W. Marsh, “Effective dose from inhaled radon and its progeny,” in Proc. First ICRP Symp. on the International System of Radiological Protection, Bethesda (MD), USA, 2012, pp. 378–388. DOI: 10.1016/j.icrp.2012.06.012
  3. G. V. Ashok et al., “Indoor radon concentration and its possible dependence on ventilation rate and flooring type,” Radiat. Prot. Dosim., vol. 148, no. 1, pp. 92–100, Feb. 2012.
    DOI: 10.1093/rpd/ncq590
    PMid: 21335628
  4. T. Katona et al., “Cost assessment of ventilation and averted dose due to radon in dwellings,” J. Environ. Radioact., vol. 79, no. 2, pp. 223–223, 2005.
    DOI: 10.1016/j.jenvrad.2004.07.004
    PMid: 15603909
  5. S. Tokonami et al., “Changes in indoor aerosol characteristics and their associated variation on the dose conversion factor due to radon progeny inhalation,” Radioisotopes, vol. 52, no. 6, pp. 285–292, Jan. 2003.
    DOI: 10.3769/radioisotopes.52.285
  6. D. Grządziel et al., “The influence of air conditioning changes on the effective doses due to radon and its short-lived decay products,” Nukleonika, vol. 61, no. 3, pp. 239–244, Sep. 2016.
    DOI: 10.1515/nuka-2016-0040
  7. Y. Yasuoka et al., “Radon mitigation using an air cleaner,” J. Radioanal. Nucl. Chem., vol. 279, no. 3, pp. 885–891, Mar. 2009.
    DOI: 10.1007/s10967-008-7379-0
  8. J. Wang et al., “Mitigation of radon and thoron decay products by filtration,” Sci. Total Environ., vol. 409, no. 19, pp. 3613–3619, Sep. 2011.
    DOI: 10.1016/j.scitotenv.2011.06.030
    PMid: 21767867
  9. K. Iwaoka et al., “Mitigation effects of radon decay products by air cleaner,” J. Radioanal. Nucl. Chem., vol. 295, no. 1, pp. 639–642, Jan. 2013.
    DOI: 10.1007/s10967-012-1813-z
  10. J. Vaupotič, “Nano particles including radon decay products in ambient air,” in Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality, N. Mazzeo, Ed., Rijeka, Croiatia: InTech, 2011, ch. 6, pp. 153–190.
    DOI: 10.5772/16369
  11. N. Stevanovic et al., “Deposition rates of unattached and attached radon progeny in room with turbulent airflow and ventilation,” J. Environ. Radioact., vol. 100, no. 7, pp. 585–589, Jul. 2009.
    DOI: 10.1016/j.jenvrad.2009.04.007
    PMid: 19428163
  12. D. Nikolopoulos and E. Vogiannis, “Modelling radon progeny concentration variations in thermal spas,” Sci. Total Environ., vol. 373, no. 1, pp. 82–93, Feb. 2007.
    DOI: 10.1016/j.scitotenv.2006.11.017
    PMid: 17188335
  13. M. Smerajec and J. Vaupotič, “Nanoaerosols including radon decay products in outdoor and indoor air at a suburban site,” J. Toxicol., vol. 2012, p. 510876, Feb. 2012.
    DOI: 10.1155/2012/510876
    PMid: 22523488
    PMCid: PMC3317232
  14. M. Bezek et al., “Radon decay products and 10–1100 nm aerosol particles in Postojna Cave,” Nat. Hazards Earth Syst. Sci., vol. 13, no. 3, pp. 823–831, Mar. 2013.
    DOI: 10.5194/nhess-13-823-2013
  15. C. Vargas Trassierra et al., “Effect of indoor-generated airborne particles on radon progeny dynamics,” J. Hazard. Mater., vol. 314, pp. 155–163, Aug. 2016
    DOI: 10.1016/j.jhazmat.2016.04.051
    PMid: 27131455
Radiation Detectors


Dovile Meskauskaite, Eugenijus Gaubas, Tomas Ceponis, Jevgenij Pavlov, Vytautas Rumbauskas

Pages: 118-123

DOI: 10.21175/RadJ.2017.02.025

Received: 10 FEB 2017, Received revised: 27 APR 2017, Accepted: 20 JUN 2017, Published online: 28 OCT 2017

High response speed sensors made of thin GaN-based structures can be important for the optical readout of the radiation signals in harsh radiation environment at hadron accelerator facilities. In this work, the metal-semiconductor-metal structure sensors formed on the MOCVD grown GaN heterostructures have been studied. The proton-induced luminescence (PI-L) and the BELIV (barrier evaluation by linearly increasing voltage) transients have simultaneously been recorded during 1.6 MeV proton irradiation emitted by a Tandetron type accelerator. The PI-L and BELIV measurements allowed for tracing the evolution of the parameters of recombination. The radiation damage on GaN-based sensors has been examined by capacitance-voltage (C-V) and deep-level transient spectroscopy (DLTS) methods. The dominant radiation defects introduced by 1.6 MeV proton beam have been unveiled.
  1. S. Fujita, “Wide-bandgap semiconductor materials: For their full bloom,” Jpn. J. Appl. Phys., vol. 54, no. 3. p. 30101, Feb. 2015.
    DOI: 10.7567/JJAP.54.030101
  2. S. J. Pearton et al., “GaN-based diodes and transistors for chemical, gas, biological and pressure sensing,” J. Phys. Condens. Matter, vol. 16, no. 29, pp. R961–R994, Jul. 2004.
    DOI: 10.1088/0953-8984/16/29/R02
  3. M. Sugiura et al., “Study of radiation detection properties of GaN pn diode,” Jpn. J. Appl. Phys., vol. 55, no. 5S, p. 05FJ02, Mar. 2016.
    DOI: 10.7567/JJAP.55.05FJ02
  4. M. Moll, “Radiation tolerant semiconductor sensors for tracking detectors,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 565, no. 1, pp. 202–211, Sep. 2006.
    DOI: 10.1016/j.nima.2006.05.001
  5. P. J. Sellin and J. Vaitkus, “New materials for radiation hard semiconductor dectectors,” Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., vol. 557, no. 2, pp. 479–489, Feb. 2006.
    DOI: 10.1016/j.nima.2005.10.128
  6. E. Gaubas et al., “Correlative analysis of the in situ changes of carrier decay and proton induced photoluminescence characteristics in chemical vapor deposition grown GaN,” Appl. Phys. Lett., vol. 104, no. 6, p. 62104, Jan. 2014.
    DOI: 10.1063/1.4865499
  7. P. Pittet et al., “PL characterization of GaN scintillator for radioluminescence-based dosimetry,” Opt. Mater. (Amst)., vol. 31, no. 10, pp. 1421–1424, Aug. 2009.
    DOI: 10.1016/j.optmat.2008.09.012
  8. Xeon 1 Power Blue LED OSB4XNE1E1E VER C.3, OptoSupply International, Hong Kong, China.
    Retrieved from: http://www.optosupply.com/uppic/201686103526.pdf
    Retrieved on: Apr. 26, 2017.
  9. E. Gaubas, T. Ceponis and J. V. Vaitkus, Pulsed capacitance technique for evaluation of barrier structures. Saarbrucken-Berlin: LAMBERT Academic Publishing, 2013.
  10. J. F. Ziegler, M. D. Ziegler and J. P. Biersack, “SRIM - The stopping and range of ions in matter (2010),” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 268, no. 11–12, pp. 1818–1823, Jun. 2010.
    DOI: 10.1016/j.nimb.2010.02.091
  11. E. Gaubas, A. Uleckas, J. Vaitkus, J. Raisanen and P. Tikkanen, “Instrumentation for the in situ control of carrier recombination characteristics during irradiation by protons,” Rev. Sci. Instrum., vol. 81, no. 5, p. 53303, May 2010.
    DOI: 10.1063/1.3429944
    PMid: 20515132
  12. D. V. Lang, “Deep-level transient spectroscopy: A new method to characterize traps in semiconductors,” J. Appl. Phys., vol. 45, no. 7, pp. 3023–3032, 1974.
    DOI: 10.1063/1.1663719
  13. FT 1030 Deep-Level Transient Spectroscopy System, PhysTech GmbH, Moosburg, Germany.
    Retrieved from: http://www.phystech.de/products/dlts/dlts.htm
    Retrieved on: Apr. 26, 2017.
  14. E. Gaubas et al., “Correlated evolution of barrier capacitance charging, generation, and drift currents and of carrier lifetime in Si structures during 25 MeV neutrons irradiation,” Appl. Phys. Lett., vol. 101, no. 23, p. 232104, Dec. 2012.
    DOI: 10.1063/1.4769370
  15. E. Gaubas, I. Brytavskyi, T. Ceponis, V. Kalendra and A. Tekorius, “Spectroscopy of deep traps in Cu2S-CdS junction structures,” Materials, vol. 5, no. 12, pp. 2597–2608, Dec. 2012.
    DOI: 10.3390/ma5122597
  16. M. A. Reshchikov, H. Morkoç, S. S. Park and K. Y. Lee, “Two charge states of dominant acceptor in unintentionally doped GaN: Evidence from photoluminescence study,” Appl. Phys. Lett., vol. 81, no. 26, p. 4970, Dec. 2002.
    DOI: 10.1063/1.1531227
  17. J. Rodrigues et al., “Influence of neutron irradiation and annealing on the optical properties of GaN,” Phys. Status Solidi C, vol. 9, no. 3-4, pp. 1016-1020, Feb. 2012.
    DOI: 10.1002/pssc.201100200
  18. M. A. Reshchikov, D. O. Demchenko, A. Usikov, H. Helava and Y. Makarov, “Carbon defects as sources of the green and yellow luminescence bands in undoped GaN,” Phys. Rev. B, vol. 90, no. 23, p. 235203, Dec. 2014.
    DOI: 10.1103/PhysRevB.90.235203
  19. J. L. Lyons, A. Janotti and C. G. Van de Walle, “Carbon impurities and the yellow luminescence in GaN,” Appl. Phys. Lett., vol. 97, no. 15, p. 152108, Oct. 2010.
    DOI: 10.1063/1.3492841
  20. M. A. Reshchikov and H. Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys., vol. 97, no. 6, p. 61301, Mar. 2005.
    DOI: 10.1063/1.1868059
  21. N. Nepal, M. L. Nakarmi, J. Y. Lin and H. X. Jiang, “Photoluminescence studies of impurity transitions in AlGaN alloys,” Appl. Phys. Lett., vol. 89, no. 9, p. 92107, Aug. 2006.
    DOI: 10.1063/1.2337856
  22. K. H. Lee and J. H. Crawford, “Luminescence of the F center in sapphire,” Phys. Rev. B, vol. 19, no. 6, pp. 3217–3221, Mar. 1979.
    DOI: 10.1103/PhysRevB.19.3217
  23. A. Castaldini, A. Cavallini, A. Castaldini and L. Polenta, “Deep levels and irradiation effects in n-GaN,” J. Phys. Condens. Matter, vol. 12, no. 49, pp. 10161–10167, 2000.
    DOI: 10.1088/0953-8984/12/49/315
  24. A. Y. Polyakov et al., “Radiation effects in GaN materials and devices,” J. Mater. Chem. C, vol. 1, no. 5, pp. 877–887, 2013.
    DOI: 10.1039/C2TC00039C
  25. S. J. Pearton, R. Deist, F. Ren, L. Liu, A. Y. Polyakov and J. Kim, “Review of radiation damage in GaN-based materials and devices,” J. Vac. Sci. Technol. A, vol. 31, no. 5, p. 50801, Apr. 2013.
    DOI: 10.1116/1.4799504
  26. A. Hierro et al., “Optically and thermally detected deep levels in n -type Schottky and p+-n GaN diodes,” Appl. Phys. Lett., vol. 76, no. 21, pp. 3064–3066, May 2000.
    DOI: 10.1063/1.126580
  27. E. Patrick et al., “Modeling proton irradiation in AlGaN/GaN HEMTs: understanding the increase of critical voltage,” IEEE Trans. Nucl. Sci., vol. 60, no. 6, pp. 4103–4108, Dec. 2013.
    DOI: 10.1109/TNS.2013.2286115
  28. B. D. Weaver et al., “On the radiation tolerance of AlGaN/GaN HEMTs,” ECS J. Solid State Sci. Technol., vol. 5, no. 7, pp. Q208–Q212, Jun. 2016.
    DOI: 10.1149/2.0281607jss
  29. E. E. Patrick, M. Choudhury, F. Ren, S. J. Pearton and M. E. Law, “Simulation of radiation effects in AlGaN/GaN HEMTs,” ECS J. Solid State Sci. Technol., vol. 4, no. 3, pp. Q21–Q25, Jan. 2015.
    DOI: 10.1149/2.0181503jss
Neutron and
Heavy Ion Radiations


Maria Ângela de B. C. Menezes, Ana Clara Oliveira Pelaes, Paula Maria Borges de Salles, Wellington Ferrari da Silva, Rodrigo Reis de Moura, Igor Felipe Silva Moura, Radojko Jaćimović

Pages: 124-128

DOI: 10.21175/RadJ.2017.02.026

Received: 13 FEB 2017, Received revised: 27 APR 2017, Accepted: 2 JUL 2017, Published online: 28 OCT 2017

Mineral composition analysis in agro industrial products is necessary for several reasons, such as the determination of nutritious value, assessment of product quality, detection of adulteration, compliance with legal and labelling requirements, food forensic, research and development. It is important to enhance that a variety of toxic elements in food has been increasing as a consequence of new agricultural practices, industrial development, and environmental pollution. For that, analytical techniques are expected to play a crucial role on chemical elemental concentration determination. In this paper, the neutron activation technique was applied by means of k0-standardized method. This method uses neutron flux monitors, spectral parameters of the nuclear reactor, gamma system counter absolutely calibrated and k0 constants and not standards of chemical elements, as in relative method. Several agro-industrial samples and one soil sample were analysed using the 100 kW TRIGA Mark I research reactor. Therefore, the objective of this paper was to show the versatility and the efficiency of this technique on multielemental concentration determination in diversified matrices, showing that several chemical elements were determined with a large range of elemental concentration. Reference materials were also analysed and evaluated statistically, pointing out the reliability of the technique.
  1. W. Wardencki et al., “Instrumental techniques used for assessment of food quality,” in Proceedings of ECOpole, 2009, pp. 273-279.
    Retrieved from: https://www.researchgate.net/publication/265307501_Instrumental_techniques_used_for_

    Retrieved on: Feb. 2, 2017.
  2. J. Davídek, “Food Quality and Assurance,” in Food Quality and Standards, vol. 2, R. Lasztity, Ed., Paris, France: EOLSS Publishers, 2009, pp. 1-25.
    Retrieved from: https://www.eolss.net/Sample-Chapters/C10/E5-08-03-00.pdf
    Retrieved on: Jan. 20, 2017.
  3. L. H. Jomaa et al., “Development of a standardized measure to assess food quality: a proof of concept,” Nutrition Journal, vol. 15, no. 1, p. 96, Nov. 2016.
    DOI: 10.1186/s12937-016-0215-4
    PMid: 27829438
    PMCid: PMC5103403
  4. L. E. Rodriguez-Saona and M. E. Allendorf, “Use of FTIR for rapid authentication and detection of adulteration of food,” Annu. Rev. Food Sci. Technol., vol. 2, pp. 467–483, 2011.
    DOI: 10.1146/annurev-food-022510-133750
    PMid: 22129392
  5. D. R. Abernethy et al., “Metal impurities in food and drugs,” Pharmaceutical Research, vol. 27, no. 5, pp. 750-755, May 2010.
    DOI: 10.1007/s11095-010-0080-3
    PMid: 20217462
  6. J. M. Perkel,Does this taste funny? The Technologies of Food Forensics,” Science, vol. 332, no. 6037, pp. 1582-1584, Jun, 2011.
    DOI: 10.1126/ science.332.6037.1582
  7. M. de la Guardia, S. Garrigues, Handbook of Mineral Elements in Food, Chichester: Wiley-Blackwell, 2015.
    DOI: 10.1002/9781118654316
  8. H. Gallardo et al., “Possibilities of low-power X-ray fluorescence spectrometry methods for rapid multielemental analysis and imaging of vegetal foodstuffs,” Journal of Food Composition and Analysis, vol. 50, pp. 1–9, Apr, 2016.
    DOI: 10.1016/j.jfca.2016.04.007
  9. A. L. de Oliveira et al., “Elemental contents in exotic Brazilian tropical fruits evaluated by energy dispersive X-ray fluorescence,” Sci. Agric. (Piracicaba, Braz.), vol. 63, no. 1, pp. 82-84, Jan-Feb. 2006.
    DOI: 10.1590/S0103-90162006000100013
  10. M. Waziri et al., “Elemental composition of ‘Dalang’: A food condiment from evaporated extract of Borassus aethiopum fruit ash,” Am. J. Food. Nutr, vol. 1, no. 3, pp. 123-125, 2011.
    DOI: 10.5251/ajfn.2011.
  11. 11. Y. F. Huang et al.,Evaluation of essential and toxic elements concentrations in different parts of buckwheat,” Czech J. Food Sci., vol. 31, no. 3, pp. 249–255, 2013.
    Retrieved from: http://www.agriculturejournals.cz/publicFiles/92401.pdf
    Retrieved on: Feb. 3, 2017.
  12. E. P. Nardi et al., “The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples,” Food Chemistry, vol. 112, no. 3, pp.727-732, Feb. 2009.
    DOI: 10.1016/j.foodchem.2008.06.010
  13. D. K. Adotey et al., “Essential elements content in core vegetables grown and consumed in Ghana by instrumental neutron activation analysis,” African Journal of Food Science, vol. 3, no. 9, pp. 243-249, Sep. 2009.
  14. M. Bounakhla et al., “Instrumental neutron activation analysis for essential and toxic elements in Kenitra city (Morocco) foods,” J. Radioanal. Nucl. Chem., vol. 282, no. 1, pp. 145-150, Sep. 2009.
    DOI: 10.1007/s10967-009-0364-4
  15. D. De Soete, R. Gijbels, J. Hoste, Neutron Activation Analysis, New York (NY), USA: Wiley - Interscience, 1972.
  16. P. M. B. Salles et al., “Inorganic elements in sugar samples consumed in several countries,” J. Radioanal. Nucl. Chem., vol. 308, no. 2, pp. 485-493, May 2016.
    DOI: 10.1007/s10967-015-4478-6
  17. K. A. P. Oliveira et al., “Use of nuclear technique in samples for agricultural purposes,” Engenharia Agrícola, vol. 33, no. 1, pp. 46-54, Jan-Feb. 2013.
    DOI: 10.1590/S0100-69162013000100006
  18. M. A. Beinner et al., “Plasma zinc and hair zinc levels, anthropometric status and food intake of children in a rural area of Brazil,” Revista de Nutrição, vol. 23, no. 1, pp. 75-83, Jan-Feb. 2010.
    DOI: 10.1590/S1415-52732010000100009
  19. M. A. B. C. Menezes et al., “Iron Quadrangle, Brazil: Elemental concentration determined by k0-instrumental neutron activation analysis Part I: Soil samples,” J. Radioanal. Nucl. Chem., vol. 270, no. 1, pp. 111–116, 2006.
    DOI: 10.1007/s10967-006-0316-1
  20. M. A. B. C. Menezes et al., “Iron Quadrangle, Brazil: Elemental concentration determined by k0-instrumental neutron activation analysis Part II: Kale samples,” J. Radioanal. Nucl. Chem., vol. 270, no. 1, pp. 117–121, 2006.
    DOI: 10.1007/s10967-006-0317-0
  21. A. L. Maulvault et al., “Nutritional quality and safety of cooked edible crab (Cancer Pagurus),” Food Chem., vol. 133, no. 2, pp. 277–283, Jul. 2012.
    DOI: doi.org/10.1016/j.foodchem.2012.01.023
    PMid: 25683396
  22. M. A. B. C. Menezes and R. Jaćimović, “Optimised k0-instrumental neutron activation method using the TRIGA MARK I IPR-R1 reactor at CDTN/CNEN, Belo Horizonte, Brazil,” Nuclear Instruments and Methods in Physics Research Section A, vol. 564, no. 2, pp. 707-715, Aug. 2006.
    DOI: 10.1016/j.nima.2006.04.013
  23. F. De Corte, The k0-standardization method: A move to the optimization of NAA, Habilitation Thesis, University of Ghent, Ghent, Belgium, 1987.
  24. F. De Corte, A. Simonits, “Recommended nuclear data for use in the k0 standardization of neutron activation analysis,” Atomic Data and Nuclear Data Tables, vol. 85, no. 1, pp. 47–67, Sep. 2003.
    DOI: 10.1016/S0092-640X(03)00036-6
  25. R. Jaćimović et al., “The recommended k[sub]0 database”, Journal of Radioanalytical and Nuclear Chemistry, vol. 300, no. 2, pp. 589-592, May 2014.
    DOI: 10.1007/s10967-014-3085-2
  26. B. J. Alloway, Heavy Metals in Soil, London, UK: Blackie Academy & Professional, 1995.
    DOI: 10.1007/978-94-007-4470-7
  27. HyperLabs Software, Budapest, Hungary, 1998–2013, HyperLab Gamma Spectroscopy Software.
    Retrieved from: http://hlabsoft.com/
    Retrieved on: Jun. 9, 2011.
  28. Kayzero for Windows for reactor neutron activation analysis (NAA) using the k­­­0 standardization method: Version 2, DSM Research, Geleen, The Netherlands, 2011.
    Retrieved from: http://www.kayzero.com/KfW%20Manual%20V1.pdf
    Retrieved on: Apr. 2, 2017.
  29. Statistical methods for use in proficiency testing by interlaboratory comparisons. ISO 13528: 2005, 2005.
Pharmaceutcal Sciences


H. I. Harbatsevich, N. V. Loginova , K. A. Nabebina, S. I. Stakhevich, I. N. Slabko, N. P. Osipovich, G. A. Ksendzova, I. I. Azarko

Pages: 129-133

DOI: 10.21175/RadJ.2017.02.027

Received: 12 FEB 2017, Received revised: 1 MAY 2017, Accepted: 26 JUN 2017, Published online: 28 OCT 2017

The process of Ni(II) ion complexation with cycloaminomethyl derivatives of 1,2-dihydroxybenzene in a water-ethanol medium was investigated. It was found potentiometrically that the complexes with the ratio M : L = 1 : 2 were formed in the solution, their overall stability constants were equal to 7,9∙1014–1,6∙1015. The Ni(II) complexes synthesized were shown to be amorphous, neutral, and thermally stable up to 150 °C. Their coordination polyhedra have the composition [NiO2N2] and planar square geometry. It was shown that the Ni(II) complexes demonstrate a moderate or high level of antimicrobial activity against bacteria and fungi strains tested, as well as the ability to neutralize superoxide.
  1. N. V. Loginova et al., “Redox-active silver(I) complexes with sterically hindered 1.2-dihydroxybenzene derivatives: Reduction of cytochrome c and antimicrobial activity,” in Cytochromes b and c: Biochemical Properties. Biological Functions and Electrochemical Analysis, R. Thom, Ed., New York (NY), USA: Nova Science Publishers, 2013, ch. 5, pp. 121-172.
  2. M. Gielen, E. R. T. Tiekink, Metallotherapeutic drugs and metal-based diagnostic agents: The Use of Metals in Medicine, Weinheim, Germany: Wiley-VCH, 2005.
    DOI: 10.1002/0470864052
  3. C. T. Walsh et al., “Nickel enzymes,” Biochemistry, vol. 26, no. 16, pp. 4901–4906, Aug. 1987.
    DOI: 10.1021/bi00390a001
    PMid: 3311157
  4. R. G. Chaudhary, “Synthesis of Ni nanoparticles: Microscopic investigation, an efficient catalyst and effective antibacterial activity,” Adv. Mater. Lett., vol. 6, no. 11, pp. 990–998, Jul. 2015.
    DOI: 10.5185/amlett.2015.5901
  5. K. B. Holt et al., “Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+,” Biochemistry, vol. 44, no. 39, pp. 13214–13223, Sep. 2005.
    DOI: 10.1021/bi0508542
    PMid: 16185089
  6. M. M. Huycke et al., “Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA,” Carcinogenesis, vol. 23, no. 3, pp. 529–536, Mar. 2002.
    DOI: 10.1093/carcin/23.3.529
    PMid: 11895869
  7. J. M. McCord, “Superoxide Dismutase. An enzymic function for erythrocuprein (hemocuprein),” J. Biol. Chem., vol. 244, no. 22, pp. 6049–6055, Nov. 1969.
    PMiD: 5389100
  8. B. A. Omar, “Superoxide dismutase: pharmacological developments and applications,” Adv. Pharmacol., vol. 23, pp. 109–161, Jun. 1992.
    DOI: 10.1016/S1054-3589(08)60964-3
  9. G. Czapski., “Requirements for SOD mimics operating in vitro to work also in vivo,” Free Radic. Res. Commun., vol. 12–13, no. 1, pp. 167–171, Jul. 1991.
    DOI: 10.3109/10715769109145782
  10. D. P. Riley, “Functional mimics of superoxide dismutase enzymes as therapeutic agents,” Chem. Rev., vol. 99, no. 9, pp. 2573–1588, Jul. 1999.
    DOI: 10.1021/cr980432g
    PMid: 11749493
  11. A. Leo et al., “Partition coefficients and their uses,” Chem. Rev., vol. 71, no. 6, pp. 525–616, Dec. 1971.
    DOI: 10.1021/cr60274a001
  12. V. Lorian, Antibiotics in Laboratory Medicine, Philadelphia (PA), USA: Lippincott Williams & Wilkins, 2005.
    PMid: 15993169
  13. K. Hyland et al., “Superoxide dismutase assay using alkaline dimethylsulfoxide as superoxide anion-generating system,” Anal. Biochem., vol. 135, no. 2, pp. 280–287, Dec. 1983.
    DOI: 10.1016/0003-2697(83)90684-X
  14. G. G. Mohamed et al., “Synthesis, spectroscopic and thermal characterization of sulpiride complexes of iron, manganese, copper, cobalt, nickel and zinc salts. Antibacterial and antifungal activity,” Spectrochim. Act., vol. 76, no. 3–4, pp. 341–347, Aug. 2010.
    DOI: 10.1016/j.saa.2010.03.016
    PMid: 20418151
  15. W. J. Geary, “The use of conductivity measurements in organic solvents for the characterization of coordination compounds,” Coord. Chem. Rev., vol. 7, no. 1, pp. 81–122, Oct. 1971.
    DOI: 10.1016/S0010-8545(00)80009-0
  16. W. Lewandowski, “The influence of metals on the electronic system of biologically important ligands. Spectroscopic study of benzoates, salicylates,. nicotinates and isoorotates,” J. Inorg. Biochem., vol. 99, no. 7, pp. 1407–1423, Jul. 2005.
    DOI: 10.1016/j.jinorgbio.2005.04.010
    PMid: 15927261
  17. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, 6th ed., Hoboken (NJ), USA: Wiley & Sons Inc., 1997.
    DOI: 10.1002/9780470405840
  18. Inorganic Electronic Structure and Spectroscopy, A. B. P. Lever, E. I. Solomon, Eds.,New York (NY), USA: John Wiley & Sons Inc., 2006.
  19. F. Basolo, R. G. Pearson, Mechanisms of Inorganic Reactions: A study of metal complexes in solution, New York, USA: Wiley & Sons,1958.
  20. D. A. Shultz et al., “Preparation and characterization of a bis-semiquinone: a bidetate dianion biradical,” J. Org. Chem., vol. 60, no. 12, pp. 3578–3579, Apr. 1995.
    DOI: 10.1021/jo00117a004

Topical review

Radiation Protection


Jozef Sabol, Bedřich Šesták

Pages: 134-138

DOI: 10.21175/RadJ.2017.02.028

Received: 15 FEB 2017, Received revised: 25 APR 2017, Accepted: 5 JUL 2017, Published online: 28 OCT 2017

In principle, CBRN (Chemical, Biological, Radiological and Nuclear) materials or agents could potentially be used by terrorists to construct a weapon of mass destruction in the future. This is why the European Union (EU), IAEA, NATO and other international groupings or organizations have taken relevant measures in fighting this threat. At present, it seems that especially the high-activity radioactive sources used in industry and medicine present a potential danger which has to be addressed. At the international and national levels various measures have been introduced aimed at the reduction of the risk due to radiological terrorism, including prevention – ensuring that unauthorized access to such sources is as difficult as possible, detection – having the capability to detect radioactive materials if control over them is lost, and preparedness and response – being able to efficiently respond to incidents involving high-activity radioactive materials and recover from them as quickly as possible. Nevertheless, we have to be prepared for the use of radiological weapons and be able to realistically assess the danger they present and to mitigate their impact on the population and the environment. The paper discusses the real consequences of an attack based on a typical powerful radioactive source. It has been found that the impact would be much lower than usually predicted. However, one cannot estimate the chaos and psychological effects, which may be more dangerous than the exposure of persons affected and the radioactive contamination of the areas surrounding the site.
  1. Categorization of Radioactive Sources, No. RS-G-1.9, 2005.
    Retrieved from: http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1227_web.pdf
    Retrieved on: Feb. 7, 2017
  2. Radiation protection and safety of radiation sources: International Basic Safety Standards, No. GSR Part 3, 2014.
    Retrieved from: http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1578_web-57265295.pdf
    Retrieved on: Feb. 7, 2017
  3. The Council of European Union. (Dec. 5, 2013). Council Directive 2013/59/Euratom laying basic safety standards for the protection against the dangers arising from exposure to ionizing radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom
    Retrieved from: https://ec.europa.eu/energy/sites/ener/files/documents/CELEX-32013L0059-EN-TXT.pdf
    Retrieved on: Feb. 7, 2017
  4. Regulatory control of radiation sources, No. GS-G-1.5, 2004.
    Retrieved from: http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1192_Web.pdf
    Retrieved on: Feb. 7, 2017
  5. Parliament of the Czech Republic. (Jan. 24, 1997). Law No. 18/1997 on peaceful use of nuclear energy and ionizing radiation (the Atomic Act).
    Retrieved from: https://www.sujb.cz/fileadmin/sujb/docs/legislativa/zakony/SUJB_CR_Atomic_Act.pdf
    Retrieved on: Feb. 7, 2017
  6. State Office for Nuclear Safety. (Jun. 13, 2002). Regulation No. 307/2002 on radiation protection.
    Retrieved from: https://www.sujb.cz/fileadmin/sujb/docs/legislativa/vyhlasky/R307_02.pdf
    Retrieved on: Feb. 7, 2017
  7. State Office for Nuclear Safety (SONS) official website, SONS, Prague, Czech Republic.
    Retrieved from: https://www.sujb.cz/en/
    Retrieved on: Feb. 7, 2017
  8. Fact sheet on dirty bombs,U.S. Nuclear Regulatory Commission, Washington (DC), USA, 2014.
    Retrieved from: https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/fs-dirty-bombs.html
    Retrieved on: Feb. 7, 2017
  9. Radiological dispersal devices (RDDs). U.S. Department of Health and Human Services, Washington (DC), USA, 2016.
    Retrieved from: https://www.remm.nlm.gov/rdd.htm
    Retrieved on: Feb. 7, 2017
  10. Radiological Dispersal Devices (RDDs): Dirty Bomb, Other Dispersal Methods, U.S. Department of Health and Human Services, Washington (DC), USA, 2017.
    Retrieved from: https://www.remm.nlm.gov/rdd.htm
    Retrieved on: Feb. 7, 2017
  11. G. M. Moore, M. A. Pomper, “Permanent risk reduction: A roadmap for replacing high-risk radioactive sources and materials,” CNS Occasional Paper, no. 23, pp. 1 – 27, Jul. 2015.
    Retrieved from: https://www.nonproliferation.org/wp-content/uploads/2015/07/Pomper-Moore-2015.pdf
    Retrieved on: Feb. 7, 2017
  12. Dirty bomb fears fuel push for alternatives to radiological materials, American Institute of Physics, College Park (MD), USA, 2016.
    Retrieved from: https://www.aip.org/fyi/2016/dirty-bomb-fears-fuel-push-alternatives-radiological-materials
    Retrieved from: Feb. 7, 2017
  13. P. S. Falk, “The dirty bomb: Too dangerous to do nothing,” Foreign Affairs, Apr. 2017.
    Retrieved from: https://www.foreignaffairs.com/articles/2017-04-04/dirty-bomb-threat
    Retrieved on: Jun. 10, 2017
  14. A. Neuhauser, “How real is the dirty bomb threat?” US News, Mar. 2017.
    Retrieved from: https://www.usnews.com/news/articles/2016-03-24/how-real-is-the-dirty-bomb-threat
    Retrieved on: Jun. 10, 2017

Short notes



Ruslan Vazirov, Sergei Sokovnin, Maria Ulitko

Pages: 139-141

DOI: 10.21175/RadJ.2017.02.029

Received: 9 FEB 2017, Received revised: 17 APR 2017, Accepted: 22 MAY 2017, Published online: 28 OCT 2017

Postradiation complications that appeared after radiotherapy are considered the most serious problem in the treatment of various types of cancer diseases. Therefore, the research of radiomodification properties of nanoparticles is highly relevant. The aim was to study the biological activity of cerium oxide nanoparticles (CONP). CONPs were obtained by pulsed electron beam evaporation in the low gas pressure on installation NANOBIM-2. A feature of this method is the preparation of nanoparticles with a large number of structural defects of various kinds, which gives them unique physical properties, and allows expecting a high biological activity. A solution of CONPs was introduced into a normal breeding medium of the cell cultures in Petri dish to a concentration of 50 - 500 mcg/ml. To stabilize the CONPs, we used sodium citrate. Samples were irradiated on arrangement of Xstrahl 300 with 200 keV energy of X-ray and, after three days, CONPs have been added. The samples were irradiated to the absorbed doses of 5, 7.5, 10 Gy. To control the absorbed doses, we used the DTG - 4 thermo luminescent dosimeters (LiF). The analysis of biological response was performed using the Goryaeva chamber and the MTT test. The results allow us to make preliminary conclusions that the early addition of low concentrations (up to 50 mcg / ml) of CONPs will increase the sensitivity of cancer cells line Hela to radiation. Thus, the CONPs could be universal radiomodifiers to radiotherapy and their properties require subsequent studies.
  1. M. Shi, B. Paquette, T. Thippayamontri, L. Gendron, B. Guerin, L. Sanche, “Increased radiosensitivity of colorectal tumors with intra-tumoral injection of low dose of gold nanoparticales,” International Journal of Nanomedicine, vol. 11, pp. 5323-5331, Oct. 2016.
    DOI: 10.2147/IJN.S97541
    PMid: 27789945
    PMCid: PMC5068480
  2. А. Б. Щербаков, Н. М. Жолобак, В. К. Иванов, Ю. Д. Третьяков, Н. Я. Спивак, “Наноматериалы на основе диоксида церия: свойства и перспективы использования в биологии и медицине,” Biotechnologia Acta, т. 4, № 1, стр. 9-28, 2011. (A. B. Shcherbakov, N. M. Zholobak, V. K. Ivanov, Yu. D. Tretyakov, N. Ya. Spivak, “Nanomaterials based on the nanocrystalline Ceric Dioxide: Properties and the use perspectives in Biology and Medicine,” Biotechnologia Acta, vol. 4, no. 1, pp. 9-28, 2011.)
    Retrieved from: http://biotechnology.kiev.ua/storage/2011/%231_2011/SherbakovNo%201.pdf
    Retrieved on: Jan. 17, 2017.
  3. Y. Xue, Q. Luan, D. Yang, X. Yao, K. Zhou, “Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles,” The Journal of Physical Chemistry C, vol. 115, no. 11, pp. 4433–4438, Mar. 2011.
    DOI: 10.1021/jp109819u
  4. V. Il`ves, S. Yu. Sokovnin, “Production and studies of properties of nanopowders on the basis of CeO2,” Nanotechnologies in Russia, vol. 7, no. 5, pp. 213-226, May 2012.
    DOI: 10.1134/S1995078012030068
  5. M. K. Bakht, V. Hosseini, H. Honarpisheh, “Radiolabeled nanoceria probes may reduce oxidative damages and risk of cancer: A hypothesis for radioisotope-based imaging procedures,” Medical Hypotheses, vol. 81, no. 6, pp. 1164-1168, Dec. 2013.
    DOI: 10.1016/j.mehy.2013.10.008
    PMid: 24210631
  6. M. S. Wason, J. Colon, S. Das, S. Seal, J. Turkson, J. Zhao, C. H. Baker, “Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS producion,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 9, no. 4, pp. 558-569, May 2012.
    DOI: 10.1016/j.nano.2012.10.010
    PMid: 23178284
    PMCid: PMC3606274
  7. V. G. Il’ves, S. Yu. Sokovnin “Production and studies of properties of nanopowders on the basis of CeO2,” Nanotechnologies in Russia, vol. 7, no. 5, pp. 213–226, May 2012.
    DOI: 10.1134/S1995078012030068
  8. S. Yu. Sokovnin, V. Il`ves “Production of nanopowders using pulsed electron beam,” Ferroelectrics, vol. 436, no. 1, pp. 101–107, 2012.
    DOI: 10.1080/10584587.2012.730951
  9. S. Yu. Sokovnin, V. G. Il`ves, M. G. Zuev, “Production of complex metal oxide nanopowders using pulsed electron beam in low pressure gas for BioMaterials application.” in Engineering of Nanobiomaterials: Applications of Nanobiomaterials, vol. 2, A. M. Grumezescu, Ed., USA: Elsevier Inc., 2016, ch. 2., pp. 29–75.
    DOI: 10.1016/B978-0-323-41532-3.00002-6
Radiation Measurements


Maria Sahagia, Aurelian Luca, Andrei Antohe, Mihail-Razvan Ioan

Pages: 142-144

DOI: 10.21175/RadJ.2017.02.030

Received: 20 FEB 2017, Received revised: 3 MAY 2017, Accepted: 5 JUL 2017, Published online: 28 OCT 2017

The absolute standardization of radionuclides is complex in the case of mixtures, such as is the case with the existence of radioactive impurities. The difficulty is still amplified in the case of radionuclides with very different emissions of gamma-rays, both as energy and intensity. One example is Co-57, which can contain impurities of isotopes Co-56 and Co-58. Even low contents of such impurities can influence in a significant way the final result as well as the activity of the measured radioactive source. In the present paper, an example of treatment of this mixture within the participation in the supplementary comparison code CCRI(II)-S6.Co-57, organized by the IAEA, within the Coordinated Research Project, CRP E.2.10.05 and in the key comparison code BIPM(II)-K1.Co-57, where the influence of impurities was underlined, will be presented.
  1. S. A.Enger, S. A., H. Lundqvist, M. D’Amours, L. Beaulieu, “Exploring (57)Co as a new isotope for brachytherapy,” Medical Physics.vol. 39, no. 5, pp. 2342 – 2345, May, 2012.
    DOI: 10.1118/1.3700171
    PMid: 22559604
  2. M. Dondi, C. P. Herbst et al., “Quality Assurance for Radioactivity Measurement in Nuclear Medicine,” International Atomic Agency, Vienna, Austria, Rep. 454, 2006.
    Retrieved from: http://www-pub.iaea.org/MTCD/publications/PDF/TRS454_web.pdf
    Retrieved on: Jan. 24, 2017
  3. M. Sahagia, A. C. Waetjen, A. Luca, C. Ivan, “IFIN-HH ionization chamber calibration and its validation; electrometric system improvement,” Appl. Rad. Isot., vol. 68, no. 7-8, pp. 1266 – 1269, Jul-Aug. 2010.
    DOI: 10.1016/j.apradiso.2009.11.009
    PMid: 20004588
  4. Table of Radionuclides: Vol. 1, BIMP, Saint-Cloud, France, 2004.
    Retrieved from: http://www.bipm.org/utils/common/pdf/monographieRI/Monographie_BIPM-5_Tables_Vol1.pdf
    Retrieved on: Jan. 25, 2017
  5. M. Sahagia, A. Luca, A. Antohe, M.-R. Ioan, “Standardization of 57Co and study of the influence of radionuclide impurities,” Appl. Rad. Isot., submitted for publication, 2017.
  6. B. E. Zimmerman, S. Palm, “Results of an international comparison of 57Co,” Appl. Rad. Isot., vol. 68, no. 7-8, pp 1217 – 1220, Jul-Aug. 2010.
    DOI: 10.1016/j.apradiso.2009.12.021
    PMid: 20071188
  7. C. Michotte, G.Ratel, S.Courte, R. Fitzgerald, M.Sahagia, “Activity measurements of the radionuclide Co-57 for the NIST, USA and the IFIN-HH, Romania in the ongoing comparison BIPM.RI(II)-K1.Co-57,” Metrologia, vol. 49, no. tech. suppl., p. 06005, 2012.
    DOI: 10.1088/0026-1394/49/1A/06005
  8. A. Luca, M. Sahagia, M.-R. Ioan, A. Antohe, B. L. Neacsu, “Experimental determination of some nuclear decay data in the decay of 177Lu, 186Re and 124I,” Appl. Rad. Isot., vol. 109, pp. 146 – 150, Mar. 2016.
    DOI: 10.1016/j.apradiso.2015.11.072
    PMid: 26656620
  9. M. Sahagia, A. Luca, M.-R. Ioan, A. Antohe, C. Ivan, “Standardization of 67Cu and calibration of the ionization chamber. Impurities and decay scheme problems,” presented at the 21st International Conference on Radionuclide Metrology and its Applications ICMR 2017, Buenos Aires, Argentina, 2017


Marina Marković, Marina Petrović, Marija Živković Radojević, Aleksandar Dagović, Vladimir Jurišić

Pages: 145-147

DOI: 10.21175/RadJ.2017.02.031

Received: 17 APR 2017, Received revised: 31 JUL 2017, Accepted: 29 AUG 2017, Published online: 28 OCT 2017

Simultaneous occurrence of lung cancer and pulmonary tuberculosis, as a significant cause of morbidity and mortality, appears in 0.7% of cases. The mechanisms of interaction between them are not fully clarified. We present a patient who, during the treatment of lung adenocarcinoma, developed pulmonary tuberculosis and, owing to a correct diagnosis, was provided with appropriate treatment. We analyzed the CT and radiographic findings during the follow-up of the patient and discussed the problems and doubts about the diagnosis of simultaneous occurrence of lung cancer and pulmonary tuberculosis. Differential diagnosis between tuberculosis and lung cancer is difficult and can pose a real clinical challenge due to the very similar symptomatology involving fever, malaise, sweating, and loss of body weight. Imaging methods routinely used in clinics, such as RTG, CT, and PET-CT, are of great help in such cases. The existence of the TB infection makes it difficult to adequately determine the nodal status in patients with lung cancer. The newly established lymph nodes may not only be the occurrence of tumors, but also already active tuberculosis or the progression of TB infection. Only the correct diagnosis can lead to successful treatment as described in this case.
  1. G.L. Bayle, Recherches sur la phitisie pulmonaire, Paris, France: Galon, 1810. (C. H. Bayle, Research on pulmonary diseases, Paris, France: Galon, 1810.)
  2. M. Skowroński et al., “Squamous cell lung cancer in a male with pulmonary tuberculosis,” Pneumonol. Alergol. Pol., vol. 83, no. 4, pp. 298 – 302, 2015.
    DOI: 10.5603/PiAP.2015.0049
    PMid: 26166791
  3. C. H. Chang et al., “Gender-based impact of epidermal growth factor receptor mutation in patients with nonsmall cell lung cancer and previous tuberculosis,” Medicine (Baltimore), vol. 94, no. 4, p. e444, Jan. 2015.
    DOI: 10.1097/MD.0000000000000444
    PMid: 25634180
    PMCid: PMC4602966
  4. V. Y. Su et al., “Latent Tuberculosis Infection and the Risk of Subsequent Cancer,” Medicine (Baltimore), vol. 95, no. 4, p. e2352, Jan. 2016.
    DOI: 10.1097/MD.0000000000002352
    PMid: 26825880
    PMCid: PMC5291550
  5. G. H. Seo et al., “Cancer-specific incidence rates of tuberculosis: A 5-year nationwide population-based study in a country with an intermediate tuberculosis burden,” Medicine (Baltimore), vol. 95, no. 38, p. e4919, Sep. 2016.
    DOI: 10.1097/MD.0000000000004919
    PMid: 27661041
    PMCid: PMC5044911
  6. D. R. Silva et al., “Pulmonary tuberculosis and lung cancer: simultaneous and sequential occurrence,” J. Bras. Pneumol, vol. 39, no. 4, pp. 484 – 489, Jun-Aug. 2013.
    DOI: 10.1590/S1806 37132013000400013
    PMid: 24068271
    PMCid: PMC4075860
  7. N. A. Yener et al., “Primary Pulmonary Mucinous (Colloid) Adenocarcinoma that Arose in the Cavernomyoplasty Area in a Patient with Tuberculosis: A Rare Case Report,” Turk. J. Pathol., vol. 33, no. 1, pp. 062 – 065, Feb. 2017.
    DOI: 10.5146/tjpath.2014.01228
  8. Y. Zhou et al., “The presence of old pulmonary tuberculosis is an independent prognostic factor for squamous cell lung cancer survival,” J. Cardiothorac. Surg, vol. 8, no. 123, May 2013.
    DOI: 10.1186/1749-8090-8-123
  9. Y. Wanget al., “Coexistence of acute miliary pulmonary tuberculosis and metastatic lung adenocarcinoma: a case report,” Quant. Imaging. Med. Surg., vol. 3, no. 3, pp. 178 – 179, Jun. 2013.
    DOI: 10.3978/j.issn.2223-4292.2013.06.06
    PMid: 23833731
    PMCid: PMC3701099
  10. M. Bhatt et al., “Pulmonary tuberculosis as differential diagnosis of lung cancer,” South Asian J. Cancer, vol. 1, no. 1, pp. 36 – 42, Jul. 2012.
    DOI: 10.4103/2278-330X.96507
    PMid: 24455507
    PMCid: PMC3876596
  11. I. Hammen, “Tuberculosis mimicking lung cancer,” Respir. Med. Case Rep., vol. 16, no. 45 – 47, Jul. 2015.
    DOI: 10.1016/j.rmcr.2015.06.007
  12. K. Ramachandran et al., “Physician Related Delays in the Diagnosis of Lung Cancer in India,” J. Clin. Diagn. Res., vol. 10, no. 11, pp. OC05 - OC08, Nov. 2016.
    DOI: 10.7860/JCDR/2016/22737.8823
  13. W. Zhao et al., “Differential diagnosis of acute miliary pulmonary tuberculosis from widespread-metastatic cancer for postoperative lung cancer patients: two cases,” J. Thorac. Dis, vol. 9, no. 2, pp. E115 – E120, Feb. 2017.
    DOI: 10.21037/jtd.2017.02.13
    PMid: 28275493
    PMCid: PMC5334083
  14. M. Hara et al., “Carcinomatous pleuritis and pericarditis accompanied by pulmonary tuberculosis,” Respirol. Case Rep, vol. 4, no. 6, p. e00202, Oct. 2016.
    DOI: 10.1002/rcr2.202
    PMid: 28031837
    PMCid: PMC5167291