Volume 2, Issue 3

Table of contents

Invited review paper



N.V. Kamanina

Pages: 148-157

DOI: 10.21175/RadJ.2017.03.032

Received: 2 MAR 2017, Received revised: 1 DEC 2017, Accepted: 5 DEC 2017, Published online: 23 DEC 2017

Due to important features of the organic -conjugated nano-objects-doped systems, main properties of which can compete with the basic inorganic bulk material parameters, the study of the organics is dominant. As the effective nano-objects and the intermolecular sensitizers, the following nanoparticles, such as fullerenes, nanotubes, quantum dots, reduced graphene oxide, shungites, etc. have been considered. So many applications of the organic materials doped with nanoparticles have been proposed. Among them, the optical limiting effect occupies a unique place because this process permits, on the one side, to extend the knowledge about the photorefractive features of innovative materials and, from the other side, it is predicted to develop new devices to protect human eyes and technical equipment from high energy density of the laser beam. In the current short review paper, the optical limiting effect will be considered based on the results obtained by some scientific and engineering teams. The data will be shown at the different experimental conditions: the content of the nano-sensitizers can be changed, the range of the wave lengths can be extended, and the level of the attenuation of the laser beam can be varied. It should be mentioned that the experimental wave length can be as the following: 532, 805, 1047, 1064, 1315, 1500, 2940 nm. The materials and optical element based on the structured organics will be shown under the application of the traditional optical limiting scheme and using the four-wave mixing technique to indicate energy losses via diffraction under the Raman-Nath diffraction conditions as one of the optical limiting mechanisms. The level of the attenuation of the laser beam will be shown for the organics based on polyimides, 2-cycloactyl-amine-5-nitropyridine, 2-(n-prolinol)-5-nitropyridine, liquid crystals and other materials. Some ways to form organic photonic crystals will be discussed.
  1. M. Hasegawa, K. Horie, “Photophysics, photochemistry and optical properties of polyimides,” Prog. Polym. Sci., vol. 26, no. 2, pp. 259 – 335, Mar. 2001.
    DOI: 10.1016/S0079-6700(00)00042-3
  2. B. G. Sumptera, D. W. Noida, M. D. Barnes, “Recent developments in the formation, characterization, and simulation of micron and nano-scale droplets of amorphous polymer blends and semi-crystalline polymers,” Polymer, vol. 44, no. 16, pp. 4389 – 4403, Jul. 2003.
    DOI: 10.1016/S0032-3861(03)00428-2
  3. D.-Y. Wang et al., “Large optical power limiting induced by three-photon absorption of two stilbazolium-like dyes,” Chem. Phys. Lett., vol. 369, no. 5-6, pp. 621 – 626, Feb. 2003.
    DOI: 10.1016/S0009-2614(03)00004-6
  4. A. G. Rozhin, Y. Sakakibara, M. Tokumoto, H. Kataura, Y. Achiba, “Near-infrared nonlinear optical properties of single-wall carbon nanotubes embedded in polymer film,” Thin Solid Films, vol. 464-465, pp. 368 – 372, Oct. 2004.
    DOI: 10.1016/j.tsf.2004.07.005
  5. J. Wang, Y. Chen and W. J. Blau, “Carbon nanotubes and nanotube composites for nonlinear optical devices,” J. Mater. Chem., vol. 19, no. 40, pp. 7425 – 7443, Aug. 2009.
    DOI: 10.1039/b906294g
  6. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman and E. W. van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics, vol. 2, no. 1, pp. 60 – 200, 2010.
    DOI: 10.1364/AOP.2.000060
  7. R. Kh. Manshad and Q. M. A. Hassan, “Optical limiting properties of magenta doped PMMA under CW laser illumination,” Adv. Appl. Sci. Res., vol. 3, no. 6, pp. 3696 – 3702, 2012.
    Retrieved from: http://www.imedpub.com/articles/optical-limiting-properties-of-magenta-doped-pmma-under-cw-laserillumination.pdf;
    Retrieved on: Jan. 28, 2017
  8. L. Wang, R. Peng, Y. Zhao, F. Wu, “Optical Limiting and Stabilization Properties of a Liquid Dye on 1064 nm Nanosecond Laser Pulses,” Opt. Photonics J., vol. 3, pp. 34 – 37, Jun. 2013.
    DOI: 10.4236/opj.2013.32B008
  9. D. Dini, M. J. F. Calvete and M. Hanack, “Nonlinear Optical Materials for the Smart Filtering of Optical Radiation,” Chem. Rev., vol. 116, no. 22, pp. 13043 – 13233, Nov. 2016.
    DOI: 10.1021/acs.chemrev.6b00033
    PMid: 27933768
  10. Y. Wang, M. Lv, J. Guo, Y.-W. Yang, “Carbon-based optical limiting materials,” Sci. China Chem., vol. 58, no. 12, pp. 1782 – 1791, Dec. 2015.
    DOI: 10.1007/s11426-015-5480-0
  11. L. W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quant. Electron., vol. 17, no. 4, pp. 299 – 338, 1993.
    DOI: 10.1016/0079-6727(93)90004-S
  12. A. Kost et al., “Optical limiting with C60 solutions,” in Proc. Int. Symp. Opt. Eng. Photonics Aerospace Sensing SPIE vol. 2229, Orlando (FL), USA, 1994, pp. 78 – 90.
    DOI: 10.1117/12.179574
  13. S. Couris, E. Koudoumas, A. A. Ruth and S. Leach, “Concentration and wavelength dependence of the effective third-order susceptibility and optical limiting of C60 in toluene solution,” J. Phys. B At. Mol. Opt. Phys., vol. 28, no. 20, pp. 4537 – 4554, Oct. 1995.
    DOI: 10.1088/0953-4075/28/20/015
  14. V. P. Belousov et al., “Fullerenes: Structural, physical-chemical, and nonlinear optical properties,” J. Opt. Technol., vol. 64, pp. 1081 – 1109, 1997.
  15. F. Lin et al., “Optical limitation and bistability in fullerene,” J. Appl. Phys., vol. 74, no. 3, pp. 2140 – 2142, Aug. 1993.
    DOI: 10.1063/1.354743
  16. J. R. Lindle, R. G. S. Pong, F. J. Bartoli, Z. H. Kafafi, “Nonlinear optical properties of the fullerenes C60 and C70 at 1.064 µm,” Phys. Rev. B, vol. 48, no. 13, pp. 9447 – 9451, Oct. 1993.
    DOI: 10.1103/PhysRevB.48.9447
  17. K. McEwan, R. Hollins, “Two-photon-induced excited-state absorption in liquid crystal media,” Proc. Int. Symp. Opt. Eng. Photonics Aerospace Sensing SPIE vol. 2229, Orlando (FL), USA, 1994, pp. 122 – 130.
    DOI: 10.1117/12.179578
  18. N. V. Kamanina, “Reverse saturable absorption in fullerene-containing polyimides. Applicability of the Förster model,” Opt. Commun., vol. 162, no. 4-6, pp. 228 – 232, Apr. 1999.
    DOI: 10.1016/S0030-4018(99)00095-4.
  19. N. V. Kamanina, “Study of reverse absorption saturation in fullerene-containing polyimides,” Opt. Spectrosc., vol. 88, no. 6, pp. 944 – 947, Jun. 2000.
    DOI: 10.1134/1.626905
  20. N. V. Kamanina, “Nonlinear optical study of fullerene-doped conjugated systems: new materials for nanophotonics applications,” in NATO Science Series – Series II: Mathematics, Physics and Chemistry: Organic Nanophotonics, vol. 100, F. Charra, V. M. Agranovich, F. Kajzar, Eds., Dordrecht, Netherlands: Springer, 2003, ch. 17, pp. 177 – 192, 2003.
    DOI: 10.1007/978-94-010-0103-8_17
  21. I. M. Belousova et al., “Peculiarities of optical limiting mechanism in liquid, polymer, and solid-state fullerene-containing media,” Nonlinear Optics, vol. 27. no. 1-4. pp. 219 – 231, 2001.
  22. S. R. Mishra, H. S. Rawat, M. P. Joshi, S. C. Mehendale, “The role of non-linear scattering in optical limiting in C60,J. Phys. B At. Mol. Opt. Phys., vol. 27, no. 8, pp. L157 – L163, Apr. 1994.
    DOI: 10.1088/0953-4075/27/8/005
  23. S. R. Mishra, H. S. Rawat, M. P. Joshi, S. C. Mehendale, K. C. Rustagi, “Optical limiting in C60 and C70 solutions,” in Proc. Int. Symp. Opt. Imaging and Instrumentation SPIE vol. 2284, San Diego (CA), USA, 1994, pp. 220 – 229.
    DOI: 10.1117/12.196132
  24. G. Gu et al., “Large non-linear absorption in C60 thin films,” J. Phys. B At. Mol. Opt. Phys., vol. 26, no. 15, pp. L451 – L455, Aug. 1993.
    DOI: 10.1088/0953-4075/26/15/004
  25. N. D. Kumar et al., “Fabrication of GRIN-materials by photopolymerization of diffusion-controlled organic-inorganic nanocomposite materials,” in Proc. Symp. Better Ceramics Through Chemistry VII: Organic/Inorganic Hybrid Mater., San Francisco (CA), USA, 1996, pp. 553 – 558.
  26. I. C. Khoo, H. Li, Y. Liang, “Observation of orientation photorefractive effects in nematic liquid crystals,” Opt. Lett., vol. 19, no. 21, pp. 1723 – 1725, Nov. 1994.
    DOI: 10.1364/OL.19.001723
    PMid: 19855634
  27. J. R. Heflin, S. Wang, D. Marciu, C. Figura, R. Yordanov, “Optical limiting of C60, C60 charge-transfer complexes, and higher fullerenes from 532 to 750 nm,” in Proc. Fullerens and Photonics II SPIE vol. 2530, San Diego (CA), USA, 1995, pp. 176 – 187.
    DOI: 10.1117/12.228117
  28. W. N. Sisk, D. H. Kang, M. Y. A. Raja, F. Farahi, “Photocurrent and optical limiting studies of C60 films and solutions,” Int. J. Optoelectronics, vol. 11, no. 5, pp. 325 – 331, Sep. 1997.
    Retrieved from: https://www.researchgate.net/publication/297405410
    Retrieved on: Jan. 28, 2017
  29. E. J. Nicol, “Optical properties of doped fullerenes in the superconducting state”, Physica B Condens. Matter., vol. 194-196, pp. 2065 – 2066, Feb. 1994.
    DOI: 10.1016/0921-4526(94)91532-6
  30. P. J. Hood, B. P. Edmonds, D. G. McLean, D. M. Brandelik, “Comparison of optical power limiting in carbon-black suspensions, C60 in toluene and C60 in chloronaphthalene at 694 nm,” in Proc. Int. Symp. Opt. Eng. Photonics Aerospace Sensing SPIE vol. 2229, Orlando (FL), USA, 1994, pp. 91 – 99.
    DOI: 10.1117/12.179575
  31. H. W. Kroto, J. E. Fischer and D. E. Cox, The Fullerenes, Oxford, UK: Pergamon Press Ltd., 1993.
  32. K. Hosoda, K. Tada, M. Ishikawa and K. Yoshino, “Effect of C60 doping on electrical and optical properties of poly[(disilanylene) oligophenylenes],” Jpn. J. Appl. Phys., vol. 36, no. 3B, pp. L372 – L375, Mar. 1997.
    DOI: 10.1143/JJAP.36.L372
  33. M. Ouyang et al., “Study of a novel C60-2,6-bis(2,2-bicyanovinyl)pyridine complex thin film,” Appl. Phys. Lett., vol. 68, no. 17, pp. 2441 – 2443, Apr. 1996.
    DOI: 10.1063/1.116161
  34. Z. Lu, S. H. Goh, S. Y. Lee, X. Sun and W. Ji, “Synthesis, characterization and nonlinear optical properties of copolymers ofbenzylaminofullerene with methyl methacrylate or ethyl methacrylate,” Polymer, vol. 40, no. 10, pp. 2863 – 2867, May 1999.
    DOI: 10.1016/S0032-3861(98)00554-0
  35. Y. Wang, N. Herron and J. Caspar, “Bucky ball and quantum dot doped polymers: a new class of optoelectronic materials,” Mater. Sci. Eng. B, vol. 19, no. 1-2, pp. 61 – 66, Apr. 1993.
    DOI: 10.1016/0921-5107(93)90166-K
  36. A. ltaya, I. Suzuki, Y. Tsuboi and H. Miyasaka, “Photoinduced electron transfer processes of C60-doped poly(N-vinylcarbazole) films as revealed by picosecond laser photolysis,” J. Phys. Chem. B, vol. 101, no. 26, pp. 5118 – 5123, Jun. 1997.
    DOI: 10.1021/jp970303o
  37. K. Yoshino, X. H. Yin, S. Morita and A. A. Zakhidov, “Difference in doping effects of C60 and C70 in poly(3-hexyithiophene),” Jpn. J. App. Phys., vol. 32, no. 1A/B pp. L140 – L143, Jan. 1993.
    DOI: 10.1143/JJAP.32.L140
  38. A. Kost, L. Tutt, M. B. Klein, T. K. Dougherty and W. E. Elias, “Optical limiting with C60 in polymethyl methacrylate,” Opt. Lett., vol. 18, no. 5, pp. 334 – 336, Mar. 1993.
    DOI: 10.1364/OL.18.000334
    PMid: 19802127
  39. S. M. Silence, C. A. Walsh, J. C. Scott and W. E. Moerner, “C60 sensitization ofphotorefractive polymers,” Appl. Phys. Lett., vol. 61, no. 25, pp. 2967 – 2969, Dec. 1992.
    DOI: 10.1063/1.108033
  40. V. P. Belousov et al., “Nonlinear optical limiters of laser radiation based on reverse saturable absorption and stimulated reflection,” in Proc. Optoelectronics and High-Power Lasers and Applications SPIE vol. 3263, San Jose (CA), USA, 1998, pp. 124 – 130.
    DOI: 10.1117/12.308342
  41. N. Kamanina et al., “Effect of fillerene doping on the absorption edge shift in COANP,” Mol. Mater., vol. 13, no. 1-4, pp. 275 – 280, 2000.
  42. N. V. Kamanina et al., “Effect of fullerenes C60 and C70 on the absorption spectrum of 2-cyclooctylamino-5-nitropyridine,” Opt. Spectrosc., vol. 89, no. 3, pp. 369 – 371, Sep. 2000.
    DOI: 10.1134/1.1310701
  43. K. Lee, R. A. J. Janssen, N. S. Sariciftci and A. J. Heeger, “Direct evidence of photoinduced electron transfer in conducting-polymer—C60 composites by infrared photoexcitation spectroscopy,” Phys. Rev. B, vol. 49, no. 8, pp. 5781 – 5784, Feb. 1994.
    DOI: 10.1103/PhysRevB.49.5781
  44. J. Bruening and B. Friedman, “Photoinduced electron transfer in conducting polymer C60 composites,” J. Chem. Phys., vol. 106, no. 23, pp. 9634 – 9638, Jun. 1997.
    DOI: 10.1063/1.473862
  45. N. V. Kamanina, L. N. Kaporskii and B. V. Kotov, “Absorption spectra and optical limiting of the fullerene—polyimide system,” Opt. Commun., vol. 152, no. 4-6, pp. 280 – 282, Jul. 1998.
    DOI: 10.1016/S0030-4018(98)00167-9
  46. N. V. Kamanina, L. N. Kaporskii and B. V. Kotov, “Study ofspectral features and the inverse absorption-saturation effect in the polyimide—fullerene system,” J. Opt. Technol., vol. 65, pp. 250 – 252, 1998.
  47. Y. A. Cherkasov et al., “Polyimides: New properties ofxerographic, thermoplastic, and liquid-crystal structures,” Proc. Int. Symp. Optical Science, Engineering and Instrumentation SPIE vol. 3471, San Diego (CA), USA, 1998, pp. 254 – 260.
    DOI: 10.1117/12.328167
  48. N. V. Kamanina, “On the mechanisms of nonlinear optical attenuation in fullerene-containing π-conjugated organic systems,” Tech. Phys. Lett., vol. 27, no. 6, pp. 515 – 518, Jun. 2001.
    DOI: 10.1134/1.1383842
  49. N. V. Kamanina, N. M. Kozhevnikov and N. A. Vasilenko, “Comparative investigations on dynamic characteristics of optically addressed liquid crystal spatial light modulators with photosensitive layers based on polyimide doped with dyes and fullerenes,” in Proc. Optoelectronics ’99 – Integrated Optoelectronic Devices SPIE vol. 3633, San Jose (CA), USA, 1999, pp. 122 – 128.
    DOI: 10.1117/12.349315
  50. N. V. Kamanina, L. N. Kaporskii, A. Pozdnyakov and B. V. Kotov, “Optical limiting in organic polyimide systems doped with fullerenes and dyes,” in Proc. Symp. Integrated Optoelectronics SPIE vol. 3939, San Jose (CA), USA, 2000, pp. 228 – 233.
  51. N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky and N. M. Kozhevnikov, “LC SLM with fullerene-dye-polyimide photosensitive layer,” Proc. Symp. Integrated Optoelectronics SPIE vol. 3951, San Jose (CA), USA, 2000, pp. 174 – 178.
    DOI: 10.1117/12.379365
  52. N. V. Kamanina, L. N. Kaporskii, V. N. Sizov and D. I. Staselko, “Holographic recording in thin C70-doped polymer organic films,” Opt. Commun., vol. 185, no. 4-6, pp. 363 – 367, Nov. 2000.
    DOI: 10.1016/S0030-4018(00)01014-2
  53. N. V. Kamanina, L. N. Kaporskii, V. N. Sizov and D. I. Stasel’ko, “Specific features of holographic recording of diffraction gratings in thin films of fullerene-containing organic systems,” Opt. Spectrosc., vol. 89, no. 5, pp. 651 – 653, Nov. 2000.
    DOI: 10.1134/1.1328116
  54. N. V. Kamanina, V. N. Sizov and D. I. Stasel’ko, “Recording of thin phase holograms in polymer-dispersed liquid-crystal composites based on fullerene-containing p-conjugated organic systems,” Opt. Spectrosc., vol. 90, no. 1, pp. 1 – 3, 2001.
    DOI: 10.1134/1.1343536
  55. N. V. Kamanina, V. N. Sizov and D. I. Stasel’ko, “Nonlinear optical properties of
    p-conjugate organic materials: holographic grating recording and optical limiting effect,” in Proc. Symp. Integrated Optics SPIE vol. 4279, San Jose (CA), USA, 2001, pp. 171 – 174.
    DOI: 10.1117/12.429381
  56. J. Wasylak, K. Ozga, I. V. Kityk, J. Kucharsk, “IR optical limiting in europium and thulium doped oxide glasses,” Infrared Phys. Technol., vol. 45, no. 5, pp. 253 – 263, Jul. 2004.
    DOI: 10.1016/j.infrared.2003.11.009
  57. I. V. Bagrov, A. P. Zhevlakov, O. P. Mikheeva, A. I. Sidorov, V. V. Sudarikov, “Optical confinement of a laser radiation in the 3.8–4.2 μm range in a composite material containing silver nanoparticles,” Tech. Phys. Lett., vol. 28, no. 7, pp. 552 – 553, Jul. 2002.
    DOI: 10.1134/1.1498782
  58. N. V. Kamanina, M. O. Iskandarov and A. A. Nikitichev, “Optical properties of 2-(p-prolinol)-5-nitropyridine–fullerene system in the middle infrared range,” Tech. Phys. Lett., vol. 29, no. 4, pp. 337 – 339, Apr. 2003.
    DOI: 10.1134/1.1573309
  59. N. V. Kamanina, I. V. Bagrov, I. M. Belousova, S. O. Kognovitskii, A. P. Zhevlakov, “Fullerene-doped p-conjugated organic systems under infrared laser irradiation,” Opt. Commun. vol. 194, no. 4-6, pp. 367 – 372, Jul. 2001.
    DOI: 10.1016/S0030-4018(01)01322-0
  60. V. A. Shulev, A. K. Filippov, N. V. Kamanina, “Laser-induced processes in the IR range in nanocomposites with fullerenes and carbon nanotubes,” Tech. Phys. Lett., vol.32, no. 8, pp. 694 – 697, Aug. 2006.
    DOI: 10.1134/S1063785006080177
  61. G. Ruani et al., “Optical limiting in the near infrared: a new approach,” in Book of Abstracts 2nd Int. Sypm. Optical Power Limiting, Venice, Italy, 2000, p. 69.
  62. D. Riehl and F. Fougeanet, “Thermodynamic modeling of optical limiting mechanisms in carbon-black suspensions (CBS),” Mol. Cryst. Liq. Cryst. Sci. Technol. B Nonlinear Opt., vol. 21, no. 1-4, pp. 391 – 398, 1999.
  63. L. Vivien, D. Riehl, P. Lançon, F. Hache, E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett., vol. 26, no. 4, pp. 223 – 225, Feb. 2001.
    DOI: 10.1364/OL.26.000223
    PMid: 18033554
  64. R. A. Ganeev et al., “Study of nonlinear optical characteristics of various media by the methods of z-scan and third harmonic generation of laser radiation,” Quantum Electron., vol. 32, no. 9, pp. 781 – 788, 2002.
    DOI: 10.1070/QE2002v032n09ABEH002291
  65. Н. В. Каманина, “Структурные, спектральные и фоторефрактивные свойства нано- и биоструктутиорованных органических материалов, включая жидкие кристаллы,” Жидкие кристаллы и их практическое использование, т. 14, но. 1, стр. 5 – 12, 2014. (N. V. Kamanina et al., “Structural, spectral and photorefractive properties of the nano- and bio-doped organic materials including the liquid crystal ones,” Liquid crystal and their application, vol. 14, no. 1, pp. 5 – 12, 2014.)
    Retrieved from: http://nano.ivanovo.ac.ru/journal/articles/37656article_2014_14_1_5-12.pdf
    Retrieved on: Jan. 28, 2017
  66. N. V. Kamanina, M. O. Iskandarov and A. A. Nikitichev, “Optical properties of a polyimide–fullerene system in the near infrared range (l = 1047 nm),” Tech. Phys. Lett., vol. 29, no. 8, pp. 672 – 675, Aug. 2003.
    DOI: 10.1134/1.1606785
  67. N. V. Kamanina, S. Putilin, D. Stasel’ko, “Nano-, pico- and femtosecond study of fullerene-doped polymer-dispersed liquid crystals: holographic recording and optical limiting effect,” Synth. Met., vol. 127, no. 1-3, pp. 129 – 133, Mar. 2002.
    DOI: 10.1016/S0379-6779(01)00602-6
  68. S. R. Mishra, H. S. Rawat, S. C. Mehendale, “Reverse saturable absorption and optical limiting in C60 solution in the near-infrared,” Appl. Phys. Lett., vol. 71, no. 1, pp. 46 – 48, Jul. 1997.
    DOI: 10.1063/1.119464
  69. A. K. Augustine, S. Mathew, P. Radhakrishnan, V. P. N. Nampoori and M. Kailasnath, “Size Dependent Optical Nonlinearity and Optical Limiting Properties of Water Soluble CdSe Quantum Dots,” J. Nanosci., vol. 2014, no. 7, 623742, 2014
    DOI: 10.1155/2014/623742
  70. U. Gurudas et al., “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys., vol. 104, no. 7, 073107, 2008.
    DOI: 10.1063/1.2990056
  71. I. V. Rubtsov, D. V. Khudiakov, A. P. Nadtochenko, A. S. Lobach, A. P.Moravskii, “Orientational rotation of C60 molecules in various solutions,” JETP Lett., vol. 60, no. 5, pp. 325 – 330, Sep. 1994.
    Retrieved from: http://www.jetpletters.ac.ru/ps/1347/article_20346.pdf;
    Retrieved on: Jan. 28, 2017
  72. I. V. Rubtsov, D. V. Khudiakov, A. P. Moravskii, A. P. Nadtochenko, “Orientational behavior of C70 molecules in chlorobenzene,” Chem. Phys. Lett., vol. 249, no. 1-2, pp. 101 – 105, Jan. 1996.
    DOI: 10.1016/0009-2614(95)01375-X
  73. N. V. Kamanina, “Optical investigations of a C70-doped 2-cyclooctylamino-5-nitropyridine–liquid crystal system,” J. Opt. A: Pure Appl. Opt, vol. 4, no. 5, pp. 571 – 574, Aug. 2002.
    DOI: 10.1088/1464-4258/4/5/313
  74. N. V. Kamanina, “Fullerene-dispersed liquid crystal structure: dynamic characteristics and self-organization processes,” Phys. Usp., vol. 48, no. 4, pp. 419 – 427, 2005.
    DOI: 10.1070/PU2005v048n04ABEH002101
  75. N. V. Kamanina, A. Emandi, F. Kajzar and A.-J. Attias “Laser-Induced Change in the Refractive Index in the Systems Based on Nanostructured Polyimide: Comparative Study with Other Photosensitive Structures,” Mol. Cryst. Liq. Cryst., vol. 486, no. 1, pp. 1 – 11, 2008.
    DOI: 10.1080/15421400801914319
  76. N. V. Kamanina and D. P. Uskokovic, “Refractive Index of Organic Systems Doped with Nano-Objects,” Mater. Manuf. Process, vol. 23, no. 6, pp. 552 – 556, 2008.
    DOI: 10.1080/10426910802157722
  77. N. V. Kamanina, “Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications,” J. Mater. Sci. Mater. Electron., vol. 23, no. 8, pp. 1538 – 1542, 2012.
    DOI: 10.1007/s10854-012-0625-9
  78. N. V. Kamanina and A. I. Plekhanov, “Mechanisms of optical limiting infullerene-doped p-conjugated organic structures demonstrated with polyimide and COANP molecules,” Opt. Spectrosc., vol. 93, no. 3, pp. 408 – 415, Sep. 2002.
    DOI: 10.1134/1.1509823
  79. M. I. Bessonov, N. P. Kuznetsov, M. M. Koton, “The transition temperatures for aromatic polymides and the physical foundations of their chemical classification,” Polymer Sci. U.S.S.R., vol. 20, no. 2, pp. 391 – 400, 1978.
    DOI: 10.1016/0032-3950(78)90050-3
  80. N. V. Kamanina, E. F. Sheka, “Optical limiters and diffraction elements based on a COANP-fullerene system: Nonlinear optical properties and quantum-chemical simulation,” Opt. Spectrosc., vol. 96, no. 4, pp. 599 – 612, 2004.
    DOI: 10.1134/1.1719152
  81. I. M. Belousova et al., “Photodynamics of nonlinear fullerene-containing media,” Proc. Laser Optics SPIE vol. 4353, St. Petersburg, Russia, 2000, pp. 75 – 83.
    DOI: 10.1117/12.417716
  82. F. Diederich et al., “Fullerene Isomerism: Isolation of C2v,-C78 and D3-C78,” Science, vol. 254 no. 5039, pp. 1768 – 1770, Dec. 1991.
    DOI: 10.1126/science.254.5039.1768
    PMid: 17829240
  83. N. V. Kamanina et al., “Photorefractive Properties of Some Nano- and Bio-Structured Organic Materials,” J. Nanotech. Diagn. Treat., vol. 2, no. 1, pp. 2 – 5, 2014.
    DOI: 10.12974/2311-8792.2014.02.01.1
  84. N. V. Kamanina, S. V. Serov, Y. Bretonniere and C. Andraud, “Organic Systems and Their Photorefractive Properties under the Nano- and Biostructuration: Scientific View and Sustainable Development,” J. Nanomater., vol. 2015, 278902, 2015.
    DOI: 10.1155/2015/278902
  85. N. V. Kamanina, S. V. Likhomanova, Yu. A. Zubtcova, A. A. Kamanin and A. Pawlicka, “Functional Smart Dispersed Liquid Crystals for Nano- and Biophotonic Applications: Nanoparticles-Assisted Optical Bioimaging,” J. Nanomater., vol. 2016, 8989250, 2016.
    DOI: 10.1155/2016/8989250
  86. N. V. Kamanina, S. V. Serov, V. P. Savinov, “Photorefractive Properties of Nanostructured Organic Materials Doped with Fullerenes and Carbon Nanotubes,” Tech. Phys. Lett., vol. 36, no. 1, pp. 40 – 42, Jan. 2010.
    DOI: 10.1134/S106378501001013X
  87. N. V. Kamanina, Features of Optical Materials Modified with Effective Nanoobjects: Bulk Properties and Interface, New York (NY), USA: Nova Science Publishers, Inc., 2014.
  88. N. V. Kamanina, Yu. A. Zubtcova, A. A. Kukharchik, C. Lazar, I. Rau, “Control of the IR-spectral shift via modification of the surface relief between the liquid crystal matrixes doped with the lanthanide nanoparticles and the solid substrate,” Opt. Express, vol. 24, no. 2, pp. A270 – A275, Jan. 2016.
    DOI: 10.1364/OE.24.00A270

Original research papers



Sara R. Hegge, Gregory L. Kin

Pages: 158-163

DOI: 10.21175/RadJ.2017.03.033

Received: 24 MAY 2017, Received revised: 15 OCT 2017, Accepted: 20 OCT 2017, Published online: 23 DEC 2017

In the event of acute radiation exposure, absorbed dose may be unknown and biodosimetry tools are needed by first responders to properly triage patients. We evaluated two protein markers – FMS-related tyrosine kinase 3 ligand (Flt3L) and granulocyte colony-stimulating factor (G-CSF) – that are known to be elevated after an acute radiation exposure, as well as total white blood cell (WBC) count changes pre- and post-irradiation at different dose-rates. Female B6D2F1 mice were divided into one sham-irradiated control group and four total-body irradiated groups. Experimental groups received a total dose of 8 Gy of 60Co gamma photon irradiation at four dose-rates: 0.04, 0.15, 0.30, & 0.47 Gy min-1. Blood samples from mice were collected at 24 and 48 hours post-exposure for WBC and protein biomarkers (Flt3L and G-CSF). Flt3L values at all dose-rates except 0.15 were significantly elevated from controls but not each other. The G-CSF levels in mouse groups of 0.47 Gy min-1 and 0.04 Gy min-1 were significantly different from controls, and 0.15 Gy min-1 significantly differed from 0.47 Gy min-1. WBC changes from baseline showed that all experimental groups were significantly lower than controls, and additionally the 0.04 Gy min-1 group was significantly lower than the 0.30 Gy min-1 group. Though more research is needed, it would appear that at the fixed dose, dose-rates, and time points chosen herein may not be particularly strong or show predictable differences in the selected biomarker expression levels.
  1. S. A. Amundson et al., “Biological indicators for the identification of ionizing radiation exposure in humans,” Expert Rev Mol Diagn, vol. 1, no. 2, pp. 211 - 219, Jul. 2001.
    DOI: 10.1586/14737159.1.2.211
    PMid: 11901816
  2. N. I. Ossetrova and W.F. Blakely, “Multiple blood-proteins approach for early-response exposure assessment using an in vivo murine radiation model,” Int. J. Radiat. Biol., vol. 85. no. 10, pp. 837 - 850,Oct. 2009.
    DOI: 10.1080/09553000903154799
    PMid: 19863200
  3. N. I. Ossetrova et al., “Early-response biomarkers for assessment of radiation exposure in a mouse total-body irradiation model,” Health Phys., vol. 106, no. 6, pp. 772 - 786, Jun. 2014.
    DOI: 10.1097/HP.0000000000000094
    PMid: 24776912
  4. N. I. Ossetrova et al., “Acute Radiation Syndrome Severity Score System in Mouse Total-Body Irradiation Model,” Health Phys., vol. 111, no. 2, pp. 134 - 144, Aug. 2016.
    DOI: 10.1097/HP.0000000000000499
    PMid: 27356057
  5. N. I. Ossetrova et al., “Combined approach of hematological biomarkers and plasma protein SAA for improvement of radiation dose assessment triage in biodosimetry applications,” Health Phys., vol. 98, no. 2, pp. 204 - 208, Feb. 2010.
    DOI: 10.1097/HP.0b013e3181abaabf
    PMid: 20065684
  6. P. G. Prasanna et al., “Synopsis of partial-body radiation diagnostic biomarkers and medical management of radiation injury workshop,” Radiat. Res., vol. 173, no. 2, pp. 245 - 253, Feb. 2010.
    DOI: 10.1667/RR1993.1
    PMid: 20095857
  7. T. Straume et al., “NASA Radiation Biomarker Workshop, September 27-28, 2007,” Radiat. Res., vol. 170, no. 3, pp. 393 - 405, Sep. 2008.
    DOI: 10.1667/RR1382.1
    PMid: 18763867
  8. C. Gabay and I. Kushner, “Acute-phase proteins and other systemic responses to inflammation,” N. Engl. J. Med., vol. 340, no. 6, pp. 448 - 454, Feb, 1999.
    DOI: 10.1056/NEJM199902113400607
    PMid: 9971870
  9. H. Youssoufian et al., “Targeting FMS-related tyrosine kinase receptor 3 with the human immunoglobulin G1 monoclonal antibody IMC-EB10,” Cancer, vol. 116, no. suppl. 4, pp. 1013 - 1017, Feb. 2010.
    DOI: 10.1002/cncr.24787
    PMid: 20127944
  10. J. M. Bertho, et al., “Level of Flt3-ligand in plasma: a possible new bio-indicator for radiation-induced aplasia,” Int. J. Radiat. Biol., vol. 77, no. 6, pp. 703 - 712, Jun. 2001.
    DOI: 10.1080/09553000110043711
    PMid: 11403710
  11. M. Prat et al., “Radiation-induced increase in plasma Flt3 ligand concentration in mice: evidence for the implication of several cell types,” Radiat. Res., vol. 163, no. 4, pp. 408 - 417, Apr. 2005.
    DOI: 10.1667/RR3340
    PMid: 15799697
  12. M. Prat et al., “Use of flt3 ligand to evaluate residual hematopoiesis after heterogeneous irradiation in mice,” Radiat. Res., vol. 166, no. 3, pp. 504 - 511, Sep. 2006.
    DOI: 10.1667/RR0568.1
    PMid: 16953669
  13. A. Huchet et al., “Plasma Flt-3 ligand concentration correlated with radiation-induced bone marrow damage during local fractionated radiotherapy,” Int. J. Radiat. Oncol. Biol. Phys, vol. 57, no. 2, pp. 508 - 515, Oct. 2003.
    DOI: 10.1016/S0360-3016(03)00584-4
  14. J. M. Bertho et al., “Initial evaluation and follow-up of acute radiation syndrome in two patients from the Dakar accident,” Biomarkers, vol. 14, no. 2, pp. 94 - 102, 2009.
    DOI: 10.1080/13547500902773904
    PMid: 19330587
  15. J. M. Bertho, et al., “New biological indicators to evaluate and monitor radiation-induced damage: an accident case report,” Radiat. Res., vol. 169, no. 5, pp. 543 - 550, May 2008.
    DOI: 10.1667/RR1259.1
    PMid: 18439044
  16. M. Drouet and F. Hérodin, “Radiation victim management and the haematologist in the future: time to revisit therapeutic guidelines?” Int. J. Radiat. Biol., vol. 86, no. 8, pp. 636 - 648, Jul. 2010.
    DOI: 10.3109/09553001003789604
    PMid: 20597842
  17. Q. Liu et al., “Clinical report of three cases of acute radiation sickness from a (60)Co radiation accident in Henan Province in China,” J. Radiat. Res., vol. 49, no. 1, pp. 63 - 69, Jan. 2008.
    DOI: 10.1269/jrr.07071
  18. L. Heslet, C. Bay and S. Nepper-Christensen, “Acute radiation syndrome (ARS) - treatment of the reduced host defense,” Int. J. Gen. Med., vol. 5, pp. 105 - 115, 2012.
    DOI: 10.2147/IJGM.S22177
    PMid: 22319248
    PMCid: PMC3273373
  19. N. I. Ossetrova et al., “Non-human Primate Total-body Irradiation Model with Limited and Full Medical Supportive Care Including Filgrastim for Biodosimetry and Injury Assessment,” Radiat. Prot. Dosimetry, vol. 172, no. 1-3, pp. 174 - 191, Dec. 2016.
    DOI: 10.1093/rpd/ncw176
    PMid: 27473690
  20. S. Desai et al., “Cytokine profile of conditioned medium from human tumor cell lines after acute and fractionated doses of gamma radiation and its effect on survival of bystander tumor cells,” Cytokine, vol. 61, no. 1, pp. 54 - 62, Jan. 2013.
    DOI: 10.1016/j.cyto.2012.08.022
    PMid: 23022376
  21. C. J. Maks et al., “Analysis of white blood cell counts in mice after gamma- or proton-radiation exposure,” Radiat. Res., vol. 176, no. 2, pp. 170 - 176, Aug. 2011.
    DOI: 10.1667/RR2413.1
    PMid: 21476859
    PMCid: PMC3575683
  22. M. J. Pecaut, G. A. Nelson and D. S. Gridley, “Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs,” In Vivo, vol. 15, no. 3, pp. 195 - 208, May-Jun. 2001.
    PMid: 11491014
  23. D. S. Gridley et al., “Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines,” In Vivo, vol. 15, no. 3, pp. 209 - 216, May-Jun. 2001.
    PMid: 11491015
  24. D. S. Gridley et al., “Low dose, low dose rate photon radiation modifies leukocyte distribution and gene expression in CD4(+) T cells,” J. Radiat. Res., vol. 50, no. 2, pp. 139 - 150, Mar. 2009.
    DOI: 10.1269/jrr.08095
  25. J. G. Kiang et al., “Wound trauma increases radiation-induced mortality by activation of iNOS pathway and elevation of cytokine concentrations and bacterial infection,” Radiat. Res., vol. 173, no. 3, pp. 319 - 332, Mar. 2010.
    DOI: 10.1667/RR1892.1
    PMid: 20199217
  26. A. B. Dey et al., “Radiation accident at Mayapuri scrap market, Delhi, 2010,” Radiat. Prot. Dosimetry, vol. 151, no. 4, pp. 645 - 651, Oct. 2012.
    DOI: 10.1093/rpd/ncs162
    PMid: 22914329


L. N. Podrezova , V. I. Volk, K. N. Dvoeglazov, S. N. Veselov

Pages: 164-168

DOI: 10.21175/RadJ.2017.03.034

Received: 6 MAR 2017, Received revised: 17 MAY 2017, Accepted: 15 JUL 2017, Published online: 23 DEC 2017

In spent nuclear fuel (SNF) reprocessing technology, the hydrometallurgical scheme in the version of the classic PUREX process was today accepted. However, in this case mass-transfer operations require significant aqueous flows. The volume of these streams subsequently becomes a liquid radioactive waste (LRW). The reducing of the waste solutions volume in the general SNF recycling process, with the following minimizing of LRW volume, was based on the use of alternative mass-transfer process - liquid chromatography (LC). Uranium-plutonium extract purification by LC process in the simulating SNF reprocessing process was carried out. The dynamic experiments on a laboratory glass column packed with a porous granular high surface material were successfully performed, and the effectiveness of the purification process was evaluated. On the laboratory liquid chromatography column (LCC), a series of dynamic experiments were carried out in order to obtain the original data for the design of a pilot unit.
  1. А. И. Холькин, В. В. Белова “О классификации экстракционных процессов А. М. Розена,” Химическая технология, т. 17, но. 4, стр. 146 – 154, 2016. (A. I. Kholkin, V. V. Belova, “On the classification of the extraction processes,” Chemical Technology, vol. 17, no. 4, pp. 146 – 154, 2016.)
  2. Н. Н. Пономарев-Степной “Двухкомпонентная ядерная энергетическая система с замкнутым ядерным топливным циклом на основе БН и ВВЭР,” Атомная энергия, т. 120, но. 4, стр. 183 – 190, 2016. (N. N. Ponomarev-Stepnoy, “Two-component nuclear power system with a closed nuclear fuel cycle based on FR and VVER,” Atomic energy, vol. 120, no. 4, pp. 183 – 190, 2016.)
  3. У. Д. Джемрек, Процессы и аппараты химико-металлургической технологии редких металлов, Москва, Россия: Атомиздат, 1965. (U. D. Jemrek Processes and apparatuses of chemical and metallurgical technology of rare metals, Moscow, Russia: Atomizdat, 1965.)
  4. А. А. Копырин, Технология производства и радиохимической переработки ядерного топлива, Москва, Россия: Атомэнергоиздат, 2006. (A. A. Kopyrin, Production and radiochemical reprocessing technology of nuclear fuel, Moscow, Russia: Atomenergoizdat, 2006.)
  5. В. И. Волк и др, “Способ проведения массообмена в системе двух несмешивающихся жидкостей и устройство для его осуществления,” RU 2 454 270 C1, июнь, 2012. (V. I. Volk et al., “The mass transfer method in the system of two immiscible liquids and device for the implementing,” Patent RU 2 454 270 C1, Jun. 2012.)
    Retrieved from: http://www1.fips.ru/Archive/PAT/2012FULL/2012.06.27/DOC/RUNWC1/000/000/002/
    Retrieved on: Jan. 28, 2017
  6. V. N. Alekseenko et al., “Reduction of Pu(IV) by carbohydrazide in aqueous solutions and in two-phase systems with tributyl phosphate,” J. Radioanal. Nucl. Chem., vol. 304, no. 1. pp. 201 – 206, Apr. 2015.
    DOI: 10.1007/s10967-014-3882-7
  7. V. Volk, E. Pavlyukevich, K. Dvoyeglazov, L. Podrezova, S. Veselov, “Investigation of diformylhydrazine interaction with Pu in technological media of extraction SNF reprocessing,” in Proc. Actinides - 2013, Karlsruhe, Germany, 2013, pp. 1-72.
  8. K. N. Dvoeglazov, V. I. Volk, V. N. Alekseenko, L. N. Podrezova et al., “Study of Pu(IV) reduction by hydrazine derivatives,” in Book of Abstracts, Atalante 2012, Montpellier, France, 2012, p. 2013.


V.M. Shakhova, Yu.V. Lomachuk, Yu.A. Demidov, L.V. Skripnikov, N.S. Mosyagin, A.V. Zaitsevskii, A.V. Titov

Pages: 169-174

DOI: 10.21175/RadJ.2017.03.035

Received: 24 MAR 2017, Received revised: 25 MAY 2017, Accepted: 5 JUL 2017, Published online: 23 DEC 2017

The YbF2 and YbF3 crystals were studied within the embedded cluster model. The small core relativistic pseudopotentials for the central Yb atom (42 valence electrons) and embedding potentials for Yb and F atoms were constructed. Chemical shifts of Kα1 and Kα2 lines of X-ray emission spectra (XES) were calculated using non-variation one-center restoration technique and relativistic density functional theory (relDFT) with the hybrid exchange-correlation functional PBE0. It was done in the YbF9Yb12F24 cluster simulating the YbF3 crystal with respect to YbF8Yb12F24 one representing the YbF2 crystal. The resulting estimates are 628 meV for Kα1 and 559 meV for Kα2 and their weighted mean agrees within 10% with the experimental value, 557±27 meV. In turn, the weighted relativistic Hartree−Fock (relHF) calculation is higher on 20%. It indicates that the incorporation of electron correlation effects is essential for reproducing the Kα1, 2 chemical shifts.
  1. K. Siegbahn, “From X-Ray to Electron Spectroscopy,” in Lecture Notes in Physics: Nishina Memorial Lectures, vol. 746,Osaka, Japan: Springer, 2009, ch. 8, pp. 137 – 228.
    DOI: 10.1007/978-4-431-77056-5_8
  2. O. I. Sumbaev, “Shift of K X-ray lines associated with valency change and with isomorphous phase transitions in rare earths,” Phys. Usp., vol. 21, no. 2, pp. 141 – 154, 1978.
    DOI: 10.1070/PU1978v021n02ABEH005519
  3. R. I. Karaziya, A. I. Udris, D. V. Grabauskas, “Use of the Chemical Shifts of Electron Levels in the Study of the Distribution of the Effective Charges of Atoms in Compounds,” J. Struct. Chem., vol. 18, no. 4, pp. 520 – 525, 1977.
    DOI: 10.1007/BF00745283
  4. Y. V. Lomachuk, A. V. Titov, “Method for Evaluating Chemical Shifts of X-ray Emission Lines in Molecules and Solids,” Phys. Rev. A, vol. 88, 062511, 2013.
    DOI: 10.1103/PhysRevA.88.062511
  5. A. V. Titov, Y. V. Lomachuk and L. V. Skripnikov, “Concept of effective states of atoms in compounds to describe properties determined by the densities of valence electrons in atomic cores,” Phys. Rev. A, vol. 90, 052522, Nov. 2014.
    DOI: 10.1103/PhysRevA.90.052522
  6. A. V. Titov, N. S. Mosyagin, A. N. Petrov, T. A. Isaev, D. P. DeMille, “Study of P,T-parity violation effects in polar heavy-atom molecules,” in Progress in Theoretical Chemistry and Physics: Recent Advances in the Theory of Chemical and Physical Systems, vol. 15, J.-P. Julien, J. Maruani, D. Mayou, S. Wilson, G. Delgado-Barrio, Eds., Dordrecht, Netherlands: Springer, 2006, ch, 12, pp. 253–283.
    DOI: 10.1007/1-4020-4528-X_12
  7. P. A. Christiansen, Y. S. Lee and K. S. Pitzer, “Improved ab initio effective core potentials for molecular calculations,” J. Chem. Phys., vol. 71, no. 11, pp. 4445–4450, 1979.
    DOI: 10.1063/1.438197
  8. N. S. Mosyagin, A. V. Zaitsevskii and A. V. Titov, “Shape-consistent relativistic effective potentials of small atomic cores, international review of atomic and molecular physics,” Int. Rev. At. Mol. Phys., vol. 1, no. 1, pp. 63 – 72, 2010.
    Retrieved from: https://pdfs.semanticscholar.org/82f5/65187ec338407439d7cb111e58e53adfc19c.pdf;
    Retrieved on: Aug. 5, 2017
  9. A. V. Titov and N. S. Mosyagin, “Generalized relativistic effective core potential: Theoretical grounds,” Int. J. Quantum Chem., vol. 71, no. 5, pp. 359 – 401, 1999.
    DOI: 10.1002/(SICI)1097-461X(1999)71:5<359::AID-QUA1>3.0.CO;2-U
  10. N. S. Mosyagin, A. V. Zaitsevskii, L. V. Skripnikov, A. V. Titov, “Generalized relativistic effective core potentials for actinides,” Int. J. Quantum Chem., vol. 116, no. 4, pp. 301 – 315, Feb. 2016.
    DOI: 10.1002/qua.24978
  11. A. V. Titov and N. S. Mosyagin, “Generalized relativistic effective core potential method: Theory and calculations,” Russ. J. Phys. Chem., vol. 74, suppl. 2, pp. S376 – S387, 2000.
    Retrieved from: https://arxiv.org/pdf/physics/0008160.pdf;
    Retrieved on: Aug. 5, 2017
  12. L. V. Skripnikov, A. N. Petrov, A. V. Titov, N. S. Mosyagin, “Electron electric dipole moment: Relativistic correlation calculations of the P,T-violation effecting the 33 state of PtH+,” Phys. Rev. A, vol. 80, no. 6, 060501(R), Dec. 2009.
    DOI: 10.1103/PhysRevA.80.060501
  13. L. V. Skripnikov, A. V. Titov, A. N. Petrov, N. S. Mosyagin, O. P. Sushkov, “Enhancement of the electron electric dipole moment in Eu2+,” Phys. Rev. A, vol. 84, no. 2, 022505, Aug. 2011.
    DOI: 10.1103/PhysRevA.84.022505
  14. A. N. Petrov, “Hyperfine and Zeeman interactions of the a(1)[3σ1+] state of PbO,” Phys. Rev. A, vol. 83, no. 2, 024502, Feb. 2011.
    DOI: 10.1103/PhysRevA.83.024502
  15. J. Lee et al., “Optical spectroscopy of tungsten carbide for uncertainty analysis in electron electric dipole moment search,” Phys. Rev. A, vol. 87, no. 2, 022516, Feb. 2013.
    DOI: 10.1103/PhysRevA.87.022516
  16. A. N. Petrov, L. V. Skripnikov, A. V. Titov, R. J. Mawhorter, “Centrifugal correction to hyperfine structure constants in the ground state of lead monofluoride,” Phys. Rev. A, vol. 88, no. 1, 010501(R), Jul. 2013.
    DOI: 10.1103/PhysRevA.88.010501
  17. L. V. Skripnikov, A. V. Titov, “LCAO-based theoretical study of PbTiO3 crystal to search for parity and time reversal violating interaction in solids,” J. Chem. Phys., vol. 145, no. 5, 054115, Aug. 2016.
    DOI: 10.1063/1.4959973
  18. L. V. Skripnikov, “Combined 4-component and relativistic pseudopotential study of ThO for the electron electric dipole moment search,” J. Chem. Phys., vol. 145, no. 21, 214301, Dec. 2016.
    DOI: 10.1063/1.4968229
    PMid: 28799403
  19. L. V. Skripnikov, A. D. Kudashov, A. N. Petrov, A. V. Titov, “Search for parity- and time-and-parity–violation effects in lead monofluoride (PbF): Ab initio molecular study,” Phys. Rev. A, vol. 90, no. 6, 064501, Dec. 2014.
    DOI: 10.1103/PhysRevA.90.064501
  20. T. Petzel, O. Greis, “The vaporization behavior of ytterbium(III) fluoride and ytterbium(II) fluoride,” J. Less-Common Met., vol. 46, no. 2, pp. 197 – 207, May 1976.
    DOI: 10.1016/0022-5088(76)90210-1
  21. B. V. Bukvetskii, L. S. Garashina, “Crystal-Chemical Investigation of the Orthorhombic Trifluorides of Samarium, Holmium, and Ytterbium,” Sov. J. Coord. Chem., vol. 3, pp. 791 – 795, 1977.
  22. I. V. Abarenkov, M. A. Boyko, “Wave-Function-Based Embedding Potential for Ion-Covalent Crystals,” Int. J. Quantum Chem., vol. 116, no. 3, pp. 211 – 236, Feb. 2016.
    DOI: 10.1002/qua.25041
  23. R. A. Kendall, T. H. Dunning, Jr. and R. J. Harrison, “Electron affinities of the first-row atoms revisited: systematic basis sets and wave functions,” J. Chem. Phys., vol. 96, no. 9, 6796, May 1992.
    DOI: 10.1063/1.462569
  24. S. G. Semenov, M. E. Bedrina, A. V. Titov, “Quantum-chemical Study of Ytterbium Fluorides and of Complex F2YbF2CeF2,” Russ. J. Gen. Chem., vol. 86, no. 6, pp. 1215 – 1220, Jun. 2016.
    DOI: 10.1134/S1070363216060013
  25. J. S. Binkley, J. A. Pople, W. J. Hehre, “Self-Consistent Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for First-Row Elements,” J. Am. Chem. Soc., vol. 102, no. 3, pp. 939 – 947, Jan .1980.
    DOI: 10.1021/ja00523a008
  26. J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865 – 3868, 1996.
    DOI: 10.1103/PhysRevLett.77.3865
    PMid: 10062328
  27. C. Adamo, V. Barone, “Toward reliable density functional methods without adjustable parameters: The PBE0 model,” J. Chem. Phys., vol. 110, no. 13, pp. 6158 – 6170, Apr. 1999.
    DOI: 10.1063/1.478522
  28. C. van Wuellen, “A quasirelativistic two-component density functional and Hartree−Fock program,” Z. Phys. Chem., vol. 224, no. 3-4, pp. 413 – 426, 2010.
    DOI: 10.1524/zpch.2010.6114
  29. L. V. Skripnikov, A. V. Titov, “Theoretical study of ThF+ in the search for t,p-violation effects: Effective state of a Th atom in ThF+ and ThO compounds,” Phys. Rev. A, vol. 91, no. 4, 042504, Apr. 2015.
    DOI: 10.1103/PhysRevA.91.042504
  30. L. V. Skripnikov, A. N. Petrov and A. V. Titov, “Communication: Theoretical study of ThO for the electron electric dipole moment search,” J. Chem. Phys., vol. 139, no. 22, 221103, Dec. 2013
    DOI: 10.1063/1.4843955
    PMid: 24329049
  31. В. А. Шабуров и др, “Состояния промежуточной валентности иттербия в интерметаллических соединениях,” т. 24, но. 1, стр. 263 – 265, 1982. (V. A. Shaburov et al., “State of the intermediate valence ytterbium in intermetallic compounds,” Phys. Solid State, vol. 24, no. 1, pp. 263–265, 1982.)
Radiation Physics


S. Di Maria , A. Belchior, Y. Romanets, P. Vaz

Pages: 175-180

DOI: 10.21175/RadJ.2017.03.036

Received: 24 FEB 2017, Received revised: 16 MAY 2017, Accepted: 5 JUL 2017, Published online: 23 DEC 2017

Given the very short range (micrometers to few nanometers) of Auger electrons (AE), Coster-Kronig (CK) and internal conversion (IC) electrons emitted by several radionuclides, they are nowadays considered as promising solutions for molecular targeted radiotherapy. The aforementioned electrons can locally deposit their energy near the radionuclide decay site, reducing the radiotoxicity of the surrounding healthy tissues in this way. 125I (T1/2=59 days, 23 Auger electrons emitted per decay, ĒAuger= 520 eV) and 99mTc (T1/2=6 h, 4.4 Auger electrons emitted per decay, ĒAuger=213 eV) are two radionuclides that are largely studied for their potential use in theranostic, even if the effectiveness of the 99mTc Auger emissions in inducing DNA double strand break (DSB) is still controversial. However, in recent years the use of 64Cu (T1/2=12.7 h, 1.80 Auger electrons emitted per decay, ĒAuger=1134 eV) emerged and became a burning issue, because, in addition to its imaging capabilities, some studies showed that 64Cu has cytotoxicity capabilities when incorporated in radiopharmaceuticals targeted at tumor cells. Therefore, for 64Cu the accurate assessment of the energy deposition pattern near the radionuclide decay site and how this energy varies with the radionuclide-DNA center distance is of paramount importance in order to better design therapeutic strategies based on the Auger electrons emitted by this radionuclide. For this reason, the aim of this work is to study the absorbed dose in the DNA and cell volumes considering the aforementioned three radionuclides described above and for the different spectra emissions of A, CK, IC and β radiation. In order to reach these goals, the state-of-the-art Monte Carlo (MC) radiation transport program MCNP6 was used. For the modeling and simulation purposes, a simplified geometry for the DNA segment, the cytoplasm and the cell, composed of liquid water, was considered and an isotropic-like source was modeled. Emission data (photons were neglected) were obtained from the International Commission on radiological Protection (ICRP) publication ICRP-107. This study shows to what extent the deposited energy pattern distribution is affected when several spectra qualities are considered (Auger, Conversion and β emissions); the discussion and comparison of results (also in terms of S-values calculated in this work and reported by MIRD) obtained for 64Cu with those obtained for 125I and 99mTc are reported.
  1. R. W. Howell, “Auger processes in the 21st century,” Int. J. Radiat. Biol., vol. 84, no. 12, pp. 959 – 975, Dec. 2008.
    DOI: 10.1080/09553000802395527
    PMid: 19061120
    PMCid: PMC3459331
  2. P. L. Olive, “The role of DNA Single- and Double Strand Breaks in cell killing by Ionizing Radiation,” Radiat. Res., vol. 150, no. 5, pp. S42-S51, Nov. 1998.
    DOI: 10.2307/3579807
    PMid: 9806608
  3. N. Falzone, J. M. Fernández-Varea, G. Flux, K. A. Vallis, “Monte Carlo Evaluation of Auger Electron–Emitting Theranostic Radionuclides,” J. Nucl. Med., vol. 56, no. 9, pp. 1441 – 1446, Sep. 2015.
    DOI: 10.2967/jnumed.114.153502
    PMid: 26205298
  4. P. Balagurumoorthy et al., “Effect of distance between decaying 125I and DNA on Auger electron induced double-strand break yield,” Int. J. Radiat. Biol., vol. 88, no. 12, pp. 998 – 1008, Dec. 2012.
    DOI: 10.3109/09553002.2012.706360
    PMid: 22732063
    PMCid: PMC3755766
  5. A. N. Asabella et al., “The Copper Radioisotopes: A Systematic Review with Special Interest to 64Cu,” BioMed Res. Int., vol. 2014, 786463, 2014.
    DOI: 10.1155/2014/786463
  6. K. Eckerman et al., “ICRP Publication 107. Nuclear decay data for dosimetric calculations,” Ann. ICRP, vol. 38, pp. 7 – 96, 2008.
    PMid: 19285593
  7. T. Goorley et al., “Initial MCNP6 release overview MCNP6 version 1.0,” Los Alamos National Laboratory, Los Alamos (NM), USA, Rep. LA-UR-13-22934, 2013.
    Retrieved from: http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-13-22934;
    Retrieved on: Aug. 7, 2017
  8. G. Hughes, “Recent developments in low-energy electron/photon transport for MCNP6,” Prog. Nuc. Sci. Tech.,vol. 4, pp. 454 – 458, 2014.
    DOI: 10.15669/pnst.4.454
  9. H. Nikjoo et al., “Track-structure codes in radiation research,” Radiat. Meas., vol. 41, no. 9-10, pp. 1052 – 1074, Oct-Nov. 2006.
    DOI: 10.1016/j.radmeas.2006.02.001
  10. C. Champion et al., “Comparison between Three Promising ß-emitting Radionuclides, 67Cu, 47Sc and 161Tb, with Emphasis on Doses Delivered to Minimal Residual Disease,” Theranostics, vol. 6, no. 10, 2016.
    DOI: 10.7150/thno.15132
    PMid: 27446495
    PMCid: PMC4955060
  11. S. M. Goddu, MIRD Cellular S-values, Reston (VA), USA: Society of Nuclear Medicine, 1997.
  12. M. A. Tajik-Mansoury, H. Rajabi and H. Mazdarani, “A comparison between track-structure, condensed-history Monte Carlo simulations and MIRD cellular S-values,” Phys. Med. Biol., vol. 62, no. 5, pp. N90 – N106, Mar. 2017.
    DOI: 10.1088/1361-6560/62/5/N90
    PMid: 28181480
  13. A. Taborda et al., “Dosimetry at the sub-cellular scale of Auger-electron emitter 99mTc in a mouse single thyroid follicle,” Appl. Radiat. Isot., vol. 108, pp. 58 – 63, Feb. 2016.
    DOI: 10.1016/j.apradiso.2015.12.010
    PMid: 26704702
  14. P. Lazakaris et al., “Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra,” Phys. Med. Biol.,vol. 57, no. 5, pp. 1231 – 1250, Mar.2012.
    DOI: 10.1088/0031-9155/57/5/1231
    PMid: 22330641
  15. M. Dingfelder et al., “Comparisons of Calculations with PARTRAC and NOREC: Transport of Electrons in Liquid Water,” Radiat. Res., vol. 169, no. 5, pp. 584 – 594, May 2008.
    DOI: 10.1667/RR1099.1
    PMid: 18439039
    PMCid: PMC3835724
  16. E. Pereira et al., “Evaluation of Acridine Orange Derivatives as DNA-Targeted Radiopharmaceuticals for Auger Therapy: Influence of the Radionuclide and Distance to DNA,” Sci. Rep., vol. 7, 42544, Feb. 2017.
    DOI: 10.1038/srep42544
  17. L. Jiang et al., “In vitro and in vivo studies on radiobiological effects of prolonged fraction delivery time in A549 cells,” J. Radiat. Res., vol. 54, no. 2, pp. 230 – 234, Mar. 2013.
    DOI: 10.1093/jrr/rrs093
    PMid: 23090953
    PMCid: PMC3589931
  18. J. F. Fowler et al., “Loss of biological effect in prolonged fraction delivery,” Int. J. Radiat. Oncol. Biol. Phys., vol. 59, no. 1, pp. 242 – 249, 2004.
    DOI: 10.1016/j.ijrobp.2004.01.004
    PMid: 15093921
  19. J. Carlsson et al., “Requirements regarding dose rate and exposure time for killing of tumour cells in beta particle radionuclide therapy,” Eur. J. Nucl. Med. Mol. Imaging, vol. 33, no. 10, pp. 1185 – 1195, Oct. 2006.
    DOI: 10.1007/s00259-006-0109-3
    PMid: 16718515
    PMCid: PMC1998878
Radiation Physics


E. A. Konovalova, M. G. Kozlov, Yu. A. Demidov, A. E. Barzakh

Pages: 181-185

DOI: 10.21175/RadJ.2017.03.037

Received: 14 FEB 2017, Received revised: 24 MAY 2017, Accepted: 3 JUL 2017, Published online: 23 DEC 2017

We suggest a method of a computation of hyperfine anomaly for many-electron atoms and ions. At first, we tested this method by calculating the hyperfine anomaly for a hydrogen-like thallium ion and obtained fairly good agreement with analytical expressions. Then, we did calculations for the neutral thallium and tested an assumption that the ratio between the anomalies for s and p1/2 states is the same for these two systems. Finally, we come up with recommendations about the preferable atomic states for the precise measurements of the nuclear g factors.
  1. A. N. Andreyev et al., “A triplet of differently shaped spin-zero states in the atomic nucleus 186Pb,” Nature, vol. 405, no. 6785, pp. 430 – 433, May 2000.
    DOI: 10.1038/35013012
    PMid: 10839532
  2. A. Bohr, V. F. Weisskopf, “The influence of nuclear structure on the hyperfine structure of heavy elements,” Phys. Rev.,vol. 77, no. 1, pp. 94 – 98, Jan. 1950.
    DOI: 10.1103/PhysRev.77.94
  3. J. E. Rosenthal, G. Breit, “The isotope shift in hyperfine structure,” Phys. Rev., vol. 41, no. 4, pp. 459 – 470, Aug. 1932.
    DOI: 10.1103/PhysRev.41.459
  4. M. F. Crawford, A. L. Schawlow, “Electron-nuclear potential fields from hyperfine structure,” Phys. Rev., vol. 76, no. 9, pp. 1310 – 1317, Nov. 1949.
    DOI: 10.1103/PhysRev.76.1310
  5. V. M. Shabaev, “Hyperfine structure of hydrogen-like ions,” J. Phys. B, vol. 27, no. 24, pp. 5825 – 5832, Dec. 1994.
    DOI: 10.1088/0953-4075/27/24/006
  6. A. Lurio, A. G. Prodell, “Hfs Separations and Hfs Anomalies in the 2P1/2 State of Ga69, Ga71, Tl203, and Tl205,” Phys. Rev., vol. 101, no. 1, pp. 79 – 83, Jan. 1956.
    DOI: 10.1103/PhysRev.101.79
  7. D. S. Richardson, R. N. Lyman, P. K. Majumder “Hyperfine splitting and isotope-shift measurements within the 378-nm 6P 1/2− 7S1/2 transition in 203Tl and 205Tl,” Phys. Rev. A, vol. 62, no. 1, 012510, Jul. 2000.
  8. P. Beiersdorfer et al., “Hyperfine structure of hydrogenlike thallium isotopes,” Phys. Rev. A, vol. 64, no. 3, 032506, Sep. 2001.
    DOI: 10.1103/PhysRevA.64.032506
  9. P. Beiersdorfer et al., “Hyperfine structure of heavy hydrogen-like ions,” Nucl. Instr. Meth. Phys. Res. B, vol. 205, pp. 62 – 65, May 2003.
    DOI: 10.1016/S0168-583X(03)00534-2
  10. A. E. Barzakh et al., “Hyperfine structure anomaly and magnetic moments of neutron deficient Tl isomers with I= 9/2,” Phys. Rev. C, vol. 86, no. 1, 014311, Jul. 2012.
    DOI: 10.1103/PhysRevC.86.014311
  11. V. M. Shabaev, M. Tomaselli, T. Kűhl, A. N. Artemyev and V. A. Yerokhin, “Ground-state hyperfine splitting of high-Z hydrogenlike ions,” Phys. Rev. A, vol. 56, no. 1, pp. 252 – 255, Jul. 1997.
    DOI: 10.1103/PhysRevA.56.252
  12. A.-M. Mårtensson-Pendrill, “Magnetic moment distributions in Tl nuclei,” Phys. Rev. Lett., vol. 74, no. 12, pp. 2184 – 2187, Mar. 1995.
    DOI: 10.1103/PhysRevLett.74.2184
    PMid: 10057864
  13. V. A. Dzuba, V. V. Flambaum, M. G. Kozlov, S. G. Porsev, “Using effective operators in calculating the hyperfine structure of atoms,” J. Exp. Theor. Phys., vol. 87, no. 5, pp. 885 – 890, Nov. 1998.
    DOI: 10.1134/1.558736
  14. M. G. Kozlov, S. G. Porsev, W. R. Johnson, “Parity nonconservation in thallium,” Phys. Rev. A, vol. 64, no. 5, 052107, Nov. 2001.
    DOI: 10.1103/PhysRevA.64.052107
  15. M. G. H. Gustavsson, C. Forssen, A.-M. Mårtensson-Pendrill, “Thallium hyperfine anomaly,” Hyperfine Interact., vol. 127, no. 1-4, pp. 347 – 352, Aug. 2000.
    DOI: 10.1023/A:1012693012231
  16. M. Kozlov, S. Porsev, M. Safronova, I. Tupitsyn, “CI-MBPT: A package of programs for relativistic atomic calculations based on a method combining configuration interaction and many-body perturbation theory,” Comput. Phys. Commun., vol. 195, pp. 199 – 213, Oct. 2015.
    DOI: 10.1016/j.cpc.2015.05.007
  17. V. F. Bratsev, G. B. Deyneka and I. I. Tupitsyn, “Application of Hartree-Fock method to calculation of relativistic atomic wave functions,” Bull. Acad. Sci. USSR, Phys. Ser., vol. 41, p. 173, 1977.
  18. S. G. Porsev, Y. G. Rakhlina, M. G. Kozlov, “Calculation of hyperfine structure constants for ytterbium,” J. Phys. B, vol. 32, no. 5, 1113, Mar. 1999.
    DOI: 10.1088/0953-4075/32/5/006
  19. N. K. Kjøller, S. G. Porsev, P. G. Westergaard, N. Andersen and J. W. Thomsen, “Hyperfine structure of the (3s 3d) 3DJ manifold of 25 Mg I,” Phys. Rev. A, vol. 91, no. 3, 032515, Mar. 2015.
    DOI: 10.1103/PhysRevA.91.032515
  20. S. G. Porsev, M. G. Kozlov, M. S. Safronova and I. I. Tupitsyn, “Development of the configuration-interaction + all-order method and application to the parity-nonconserving amplitude and other properties of Pb,” Phys. Rev. A, vol. 93, no. 1, 012501, Jan. 2016.
    DOI: 10.1103/PhysRevA.93.012501
  21. I. Klaft et al., “Precision Laser Spectroscopy of the Ground State Hyperfine Splitting of Hydrogenlike 209Bi82+,” Phys. Rev. Lett., vol. 73, no. 18, pp. 2425 – 2427, Oct. 1994.
    DOI: 10.1103/PhysRevLett.73.2425
    PMid: 10057056
  22. A. V. Glushkov et al., “QED calculation of the superheavy elements ions: Energy levels, Lamb shift, hyperfine structure, nuclear finite size effect,” Nucl. Phys. A., vol. 734, suppl. 5, pp. E21 – E24, Apr. 2004.
    DOI: 10.1016/j.nuclphysa.2004.03.010
  23. O. Yu. Khetselius, “Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes,” Int. J. Quant. Chem., vol. 109, no. 14, pp. 3330 – 3335, Nov. 2009.
    DOI: 10.1002/qua.22269
  24. I. I. Tupitsyn, M. G. Kozlov, M. S. Safronova, V. M. Shabaev, V. A. Dzuba, “Quantum Electrodynamical Shifts in Multivalent Heavy Ions,” Phys. Rev. Lett., vol. 117, no. 25, 253001, Dec. 2016.
    DOI: 10.1103/PhysRevLett.117.253001
Radiation Protection


Jozef Kubinyi, Jozef Sabol, Jana Hudzietzová

Pages: 186-191

DOI: 10.21175/RadJ.2017.03.038

Received: 28 FEB 2017, Received revised: 7 MAY 2017, Accepted: 18 JUL 2017, Published online: 23 DEC 2017

Ionizing radiation and radionuclides are widely used in diagnostic radiology, nuclear medicine and radiotherapy. Radiation related methods and procedures are especially useful in diagnostic applications where they provide valuable information about the patient conditions and problems. In this case, the effort is concentrated in obtaining the required diagnostic data while keeping the exposure to the patients to a very minimum level. On the other hand, the therapeutic use of radiation, in the form of external or internal exposure is aimed at delivering the relevant (rather high) doses to a particular volume in the organ or tissue in order to cure the tumour. In both of these modalities, the patients also receive a certain undesirable dose to healthy or normal tissues in the vicinity of the tumour. Obviously, any exposure may result in some stochastic effects characterized by a very small increase in the probability of developing additional cancers in years after the exposure. The paper discusses various methods of explaining the radiation risk to patients undergoing specific examinations or treatments involving radiation exposure. It also outlines the approach of the European Union and the situation in the Czech Republic.
  1. F. Mettler et al., “Radiologic and nuclear medicine studies in the United States and worldwide,” Radiology,vol. 253, no. 2, pp. 520 – 531, Nov. 2009.
    DOI: 10.1148/radiol.2532082010
    PMid: 19789227
  2. J. Sabol and B. Šesták, “Communication with the public in radiation protection and nuclear safety and security,” in Proc. European Nuclear Conference - ENC 2014, pp. 150 – 157, Marseille, France, 2014.
    Retrieved from: http://www.euronuclear.org/events/enc/enc2014/transactions/ENC2014-transactions-reviewed.pdf;
    Retrieved on: Aug. 3, 2017
  3. J. Sabol et al, “Current Activities of the European Union in Fighting CBRN Terrorism Worldwide,” in Nuclear threats and security challenges, S. Apikyan and D. Diamond Eds., Los Angeles (CA), USA: Springer Science, 2015, ch. 15, pp. 157 – 167.
    DOI: 10.1007/978-94-017-9894-5
  4. “The 2007 Recommendations of the International Commission on Radiological Protection”, Ann. ICRP, vol. 37, no. 2-4, 2007.
    Retrieved from: http://www.icrp.org/docs/ICRP_Publication_103-Annals_of_the_ICRP_37(2-4)-Free_extract.pdf;
    Retrieved on: Aug. 3, 2017
  5. F. A. Stewart et al., “ICRP Statement on tissue reactions/Early and late effects of radiation in normal tissues and organs – threshold doses for tissue reactions in a radiation protection context,” Ann. ICRP, vol. 41, no. 1-2, 2012.
    Retrieved from: http://files.site-fusion.co.uk/webfusion117640/file/icrp118_1.pdf;
    Retrieved on: Aug. 3, 2017
  6. N. Hamada et al., “Emerging issues in radiogenic cataract and cardiovascular disease,” J. Radiat. Res.,vol. 55, no. 5, pp. 831 – 846, Sep. 2014.
    DOI: 10.1093/jrr/rru036
    PMid: 24824673
    PMCid: PMC4202294
  7. K. Kamiya et al., “Long-term effects of radiation exposure on health,” Lancent, vol. 386, no. 9992, pp. 469 – 478, Aug. 2015.
    DOI: 10.1016/S0140-6736(15)61167-9
  8. T. Lawrence et al., “Fears, feelings, and facts: Interactively communicating benefits and risks of medical radiation with patients,” AJR Am. J. Roentgenol.,vol. 196, no. 4, Apr. 2011.
    DOI: 10.2214/AJR.10.5956
  9. “Radiation dose management for fluoroscopically guided interventional medical procedures,” NCRP, Bethesda (MD), USA, Rep. 168, 2010.
  10. K. Mück et al., “A proposal for radiation protection scale to better communicate with the public,” in Proc. IRPA-10 Int. Cong. Int. Rad. Prot. Assoc., Hiroshima, Japan, 2000.
    Retrieved from: https://pdfs.semanticscholar.org/f64b/e03a893f14f3c7ae8c7de93f8b30b0499c90.pdf;
    Retrieved on: Jul. 10, 2017
  11. The Council of the European Union. (Dec. 5, 2013). Council Directive 2013/59/Euratom laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
    Retrieved from: https://ec.europa.eu/energy/sites/ener/files/documents/CELEX-32013L0059-EN-TXT.pdf;
    Retrieved on: Jul. 23, 2017
  12. The Parliament of the Czech Republic. (Nov. 6, 2011). Patient’s consent with provision of information in agreement with the Act No. 372/2011 Coll., on health services and the terms and conditions for the providing of such services.
    Retrieved from: https://www.dentmedico.cz/wp-content/uploads/2016/10/Pouceni-a-souhlas-pacienta-AJ.pdf;
    Retrieved on: Jul. 23, 2017


Tatiana Paramonova, Vladimir Belyaev, Olga Komissarova, Maxim Ivanov

Pages: 192-199

DOI: 10.21175/RadJ.2017.03.039

Received: 16 FEB 2017, Received revised: 8 MAY 2017, Accepted: 3 JUL 2017, Published online: 23 DEC 2017

Vertical distribution of Cs-137 in cultivated chernozems of the Plavsk radioactive hotspot has been investigated, with the emphasis on the plough horizon. It is shown that the commonly expected complete homogeneity of the isotope vertical distribution within the plough and old-plough horizons of cultivated chernozems is not always achieved. Incomplete homogeneity can be explained by the application of different cultivation techniques for various crops within the crop rotation system employed. Important observation is that in cases of relatively shallow cultivation (such as disking to 12-15 cm depth) the largest root biomass content remains within the upper 10 cm layer, while maximum Cs-137 content is shifted downwards to underplough layer at 10-20 cm depths. At the same time, traditional cultivation with plough layer rotation and mixing to the 20-25 cm depth results in more uniform Cs-137 distribution through the plough layer, while layer of active root uptake of mineral matter for row crops shifts from the soil surface downward. Therefore, it can be recommended that the systematic monitoring of cultivated topsoil conditions based on preliminary assessment of Cs-137 vertical profile distribution, taking into account agrotechnical specifics of different crops within the crop rotation, must be carried out in order to obtain the reliable assessment of the soil radioecological status.
  1. E. J. Evans and A. J. Decker, “Fixation and Release of Cs-137 in soils and soil separates,” Canad. J. Soil Sci., vol. 46,no. 3, pp. 212 – 217, 1966.
    DOI: 10.4141/cjss66-035
  2. B. L. Sawhney, “Selective sorption and fixation of cations by clay minerals: A review,” Clays Clay Miner., vol. 20,pp. 93 – 100, Apr. 1972.
    DOI: 10.1346/CCMN.1972.0200208
  3. R. M. Cornell, “Adsorption of cesium on minerals: A review”, J. Radioanal. Nucl. Chem., vol. 171, no. 2, pp. 483 – 500, Jul. 1993.
    DOI: 10.1007/BF02219872
  4. R. M. Alexakhin et al., “Accident at the Chernobyl nuclear power plant,” in Large radiation accidents: consequences and protective countermeasures, L. A. Ilyn, V. A. Gubanov, Eds., Moscow, Russia: IzdAT Publisher, 2004, ch. 3, pp. 330 – 386.
  5. Soil Sampling for Environmental Contaminants, IAEA-TECDOC-1415, IAEA, Vienna, Austria, 2004, pp. 7 – 39.
    Retrieved from: http://www-pub.iaea.org/MTCD/Publications/PDF/te_1415_web.pdf;
    Retrieved on: Jan. 22, 2017
  6. Remediation of sites with dispersed radioactive contamination, IAEA Technical report series No. 424, IAEA, Vienna, Austria, 2004, pp. 29 – 30.
    Retrieved from: http://www-pub.iaea.org/MTCD/publications/PDF/TRS424_web.pdf;
    Retrieved on: Jan. 23, 2017
  7. Guidelines for remediation strategies to reduce the radiological consequences of environmental contamination, IAEA Technical Report Series No. 475, IAEA, Vienna, Austria, 2012, pp. 13 – 16, 22 – 23, 37 – 38, 126 – 131.
    Retrieved from: http://www-pub.iaea.org/MTCD/publications/PDF/trs475_web.pdf;
    Retrieved on: Jan. 23, 2017
  8. F. Bréchignac et al., “Controlled lysimetric simulation of accidents giving rise to radioactive pollution of the agricultural environment: Synthetic overview of research carried out at IPSN,” Radioprotection, vol. 36,no. 3, pp. 1 – 26, Jul. 2001.
    Retrieved from: https://www.researchgate.net/publication/245276339;
    Retrieved on: Jan. 23, 2017
  9. Атлас современных и прогнозных аспектов последствий аварий на Чернобыльской АЭС на пострадавших территориях России и Беларуси, Ю. А. Израэль и И. М. Богдевич, ред., Москва-Минск: Фонд «Инфосфера»–НИА-Природа, 2009, стр. 49 – 54. (Atlas of modern and forward-looking aspects of the consequences of the Chernobyl accident in the affected areas of Belarus and Russia, Yu. A. Izrael and I.M. Bogdevich, Eds., Moscow-Minsk: Fund "infosphere"-NIA-Nature, 2009, pp. 49 – 54.)
    Retrieved from: http://rb.mchs.gov.ru/upload/site1/document_file/oMqlw2bV2b.pdf;
    Retrieved on: Feb. 11, 2017
  10. International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Report 106, FAO, Rome, Italy, 2015. p. 101.
    Retrieved from: http://www.fao.org/3/a-i3794e.pdf;
    Retrieved on: May 2, 2017
  11. T. Paramonova et al., “Modern parameters of caesium-137 root uptake in natural and agricultural grass ecosystems of contaminated post-chernobyl landscape, russia,” Eurasian J. Soil Sci., vol. 4,no. 1, pp. 30 – 37, Jan. 2015.
    Retrieved from: http://gazi.dergipark.gov.tr/download/article-file/62906;
    Retrieved on: Feb. 11, 2017
  12. T. Paramonova and A. Tunik, “Cs-137 in aggregate fractions of arable chernozems: Plavsk radioactive hot spot, russia,” in Book of Abstracrs. 3rd Int. Conf. Radiation and Applications in Various Fields of Research RAD 2015, Budva, Montenegro, 2015, p. 540.
    Retrieved from: http://www.rad2015.rad-conference.org/pdf/Book%20Abctracts%20RAD%202015.pdf;
    Retrieved on: Jan. 23, 2017
  13. M. Ivanov, V. Golosov, E. Shamshurina, “Evaluation of optimal number of soil samples for detail reconstruction of initial field of 137cs fallout in chernobyl affected areas,” Eurasian J. Soil Sci., vol. 4, no. 4, pp. 227 – 233, Oct. 2015.
    Retrieved from: http://dergipark.ulakbim.gov.tr/ejss/article/view/5000145555;
    Retrieved on: May 2, 2017
  14. D. N. Lipatov, D. V. Manakhov, L. A. Vezhlivtseva, “Migration of radiocesium in lea and plowed soils of agricultural landscapes in tula region,” Moscow Univ. Soil Sci. Bull., vol. 58, no. 3, pp. 43 – 51, Jul. 2003.
    Retrieved from: https://www.researchgate.net/publication/261949494;
    Retrieved on: May 2, 2017
  15. A. Angjeleska et al., “Determination of the vertical distribution of 226Ra, 232Th, 40К and 137Cs in samples of cultivated soil taken in vicinity of certain cities in Republic of Macedonia,” Agricult. Forestry, vol. 60, no. 3, pp. 97 – 106, 2014.
    Retrieved from: https://www.researchgate.net/publication/266202754;
    Retrieved on: Jan. 23, 2017
  16. J. Koarashi et al., “Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions,” Sci. Total Environ.,vol. 431, pp. 392 – 401, Aug, 2012.
    Retrieved from: https://www.researchgate.net/publication/227173596
    Retrieved on: May 2, 2017
Medical Physics


Katarina Karadžić, Vuk Karadžić

Pages: 200-203

DOI: 10.21175/RadJ.2017.03.040

Received: 15 FEB 2017, Received revised: 31 MAY 2017, Accepted: 4 JUL 2017, Published online: 23 DEC 2017

Mammography presents one of the most precise methods for detection of irregularities inside the breast. Its most important function is discovering diseases like cancer at an early phase. Although mammography uses a low dose x-ray system, the examination still poses certain risk for a patient. Mean glandular dose gives the best representation of risk involved for a patient undergoing mammography examination. In this study, we estimated adipose, glandular and total dose to the breast using Monte Carlo simulations. For this purpose, we designed a voxel breast phantom. Simulations were performed using MCNPX code. Verification of phantom design and simulations was done by comparing the results with those published in similar studies.
  1. K. Kerlikowske, D. Grady, S. M. Rubin, C. Sandrock and V. L. Ernster, “Efficacy of screening mammography. A meta-analysis,” J. Am. Med. Assoc., vol. 273, no. 2, pp. 149 – 54, Jan. 1995.
    DOI: 10.1001/jama.1995.03520260071035
    PMid: 7799496
  2. D. R. Dance, “Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose,” Phys. Med. Biol., vol. 35, no. 9, pp. 1211 – 1219, Sep. 1990.
    DOI: 10.1088/0031-9155/35/9/002
  3. D. R. Dance, K. C. Young and R. E. van Engen, “Further factors for the estimation of mean glandular dose using the United Kingdom, European and IAEA breast dosimetry protocols,” Phys. Med. Biol., vol. 54, no. 14, pp. 4361 – 4372, Jun. 2009.
    DOI: 10.1088/0031-9155/54/14/002
    PMid: 19550001
  4. J. M. Boone, “Glandular breast dose for monoenergetic and high-Energy x-ray beams: Monte Carlo assessment,” Radiology, vol. 213, no. 1, pp. 23 – 37, Oct. 1999.
    DOI: 10.1148/radiology.213.1.r99oc3923
    PMid: 10540637
  5. D. R. Dance et al., “Breast Dosimetry Using High-resolution Voxel Phantoms,” Radiat. Prot. Dosim., vol. 114, no. 1-3, pp. 359 – 363, May 2005.
    DOI: 10.1093/rpd/nch510
    PMid: 15933137
  6. K. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi and N Pallikarakis, “A three-dimensional breast software phantom for mammography simulation,” Phys. Med. Biol., vol. 48, no. 22, pp. 3699–3719, Nov. 2003.
    DOI: 10.1088/0031-9155/48/22/006
    PMid: 14680268
  7. A. K. W. Ma, S. Gunn, D. G. Darambara, “Introducing DeBRa: A detailed breast model for radiological studies,” Phys. Med. Biol., vol. 54, no. 14, pp. 4533 – 4545, Jul. 2009.
    DOI: 10.1088/0031-9155/54/14/010
    PMid: 19556683
  8. L. Gholamkar, A. A. Mowlavi, M. Sadeghi and M. Athari, “Assessment of Mean Glandular Dose in Mammography System with Different Anode-Filter Combinations Using MCNP Code,” Iran J. Radiol., vol. 13, no. 4, e36484, Oct. 2016.
    DOI: 10.5812/iranjradiol.36484
    PMid: 27895876
    PMCid: PMC5117115
  9. A. K. W. Ma, A. Alghamdi, “Development of a realistic computational breast phantom for dosimetric simulations,” Nucl. Sci. Thech., vol. 2, pp. 147 – 152, 2011;
    DOI: 10.15669/pnst.2.147
  10. A. K. W. Ma, D. G. Darambara, A. Stewart, S. Gunn, E. Bullard, “Mean glandular dose estimation using MCNPX for a digital breast tomosynthesis system with tungsten/aluminum and tungsten/aluminum+silver x-ray anode-filter combinations,” Med. Phys., vol. 35, no. 12, pp. 5278 – 5289, Dec. 2008.
    DOI: 10.1118/1.3002310
    PMid: 19175087
  11. I. Sechopoulos, S. Suryanarayanan, S. Vedantham, C. D’Orsi, A. Karellas, “Computation of the glandular radiation dose in digital tomosynthesis of the breast,” Med. Phys., vol. 34, no. 1, pp. 221 – 232, Jan. 2007.
    DOI: 10.1118/1.2400836
    PMid: 17278508
    PMCid: PMC4280100
  12. J. Zhang, B. Bednarz and X. G. Xu, “An Investigation of Voxel Geometries for MCNP-based Radiation Dose Calculations,” Health phys., vol. 91, suppl. 2, pp. S59 – S65, Nov. 2006.
    DOI: 10.1097/01.HP.0000234039.58356.de
    PMid: 17023800
  13. G. Verdú et al., “Mammographic Dosimetry Using MCNP-4B,” J. Nucl. Sci. Tech., vol. 37, suppl. 1, pp. 875 – 879, 2000.
    DOI: 10.1080/00223131.2000.10875015
  14. D. B. Pelotiwz, “MCNPX user’s manual version 2.7.0,” Los Alamos National Library, Los Alamos (NM), USA, Rep. LA-CP-11-00438, 2011.
  15. G. R. Hammerstein et al., “Absorbed radiation dose in mammography,” Radiology, vol. 130, no. 2, pp. 485 – 491, Feb. 1979.
    DOI: 10.1148/130.2.485
    PMid: 760167
  16. J. H. Hubbell and S. M. Seltzer, “Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients,” NIST, Gaithersburg (MD), USA, 2004.
    Retrieved from: https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients;
    Retrieved on: Dec 20, 2016
  17. Tissue substitutes in radioation dosimetry and measurements, ICRU Report 44, ICRU, Bethesda (MD), USA, 1989.
  18. K. Cranley, B. J. Gilmore, G. W. A. Fogarty and L. Desponds, Catalogue of Diagnostic X-ray Spectra and Other Data, IPEM Report 78, IPEM, New York (NY), USA, 1997.


Marija Dakovic Bjelakovic, Jelena Popovic, Dragan Stojanov, Tanja Dzopalic, Jelena Ignjatovic

Pages: 204-209

DOI: 10.21175/RadJ.2017.03.041

Received: 15 FEB 2017, Received revised: 9 MAY 2017, Accepted: 4 JUL 2017, Published online: 23 DEC 2017

In this study, we aimed to analyze the variability in the size and localization of infraorbital foramen (IOF) with respect to the surrounding anatomical bony landmarks using the three-dimensional computed tomography (3D-CT) with the volume rendering and evaluate these morphometric parameters in relation to the gender and side. The cranial CT scans of 60 living adult subjects, without any trauma or malformation of facial bones were included in the study. Data of the subjects were collected in the Center of Radiology, Clinical Center Nis, Serbia. Measurements included the transverse and vertical diameter of the IOF foramen, the distance from IOF to facial midline, the distance to lateral margin of the piriform aperture, the distance to infraorbital margin and the distance to maxillary alveolar border. All measurements were done bilaterally and performed with a digital coordinate caliper. Obtained results were statistically analyzed. Observation of 120 hemi-skulls revealed that the IOF was present in all of them. The mean transverse diameter of the IOF was 2.81 ± 0.69 mm and the mean vertical diameter was 3.41 ± 0.88 mm. The IOF was located at an mean distance 26.17 ± 1.69 mm from facial midline, 14.99 ± 1.30 mm from the lateral margin of the piriform aperture, 9.06 ± 1.01 mm below the IOM and 28.22 ± 2.78 mm above the maxillary alveolar border. Statistically significant difference was found between males and females for the distance from IOF to PA (p < 0.05). These morphometric characteristics may have important implications for the surgical and local anesthetic planning.
  1. Gray’s anatomy, P. L. Williams, R. Warwick, M. Dyson, L. H. Bannister, Eds., 37th ed., Edinburg, UK: Churchil Livingstone, 1989.
  2. K. L. Moore and A. F. Dalley, Clinically oriented anatomy, 5th ed., Philadelphia (PA), USA: Lippincott Williams & Wilkins, 2006.
  3. C. T. Mcqueen, D. C. Diruggiero, J. P. Campbell and W. W. Shockly, “Orbital osteology: A study of the surgical lendmarks,” Laryngoscope, vol. 105, no. 8, pp. 783 – 788, Aug. 1995.
    DOI: 10.1288/00005537-199508000-00003
    PMid: 7630287
  4. G. A. Salam, “Regional anesthesia for office procedures: part I. Head and neck surgeries,” Am. Fam. Physician, vol. 69, no. 3, pp. 585 – 590, Feb. 2004.
    Retrieved from: http://www.aafp.org/afp/2004/0201/p585.pdf;
    Retrieved on: Feb. 12, 2017
  5. D. J. Kleier, D. K. Deeg and R. C. Averbach, “The extraoral approach to the infraorbital nerve block,” J. Am. Dent. Assoc., vol. 107, no. 5, pp. 758 – 760, Nov. 1983.
    Retrieved from: http://jada.ada.org/article/S0002-8177%2883%2975018-X/pdf
    Retrieved on: Feb. 12, 2017.
  6. S. R. Aziz, J. M. Marchena and A. Puran, “Anatomic characteristics of the infraorbital foramen: a cadaveric study,” J. Oral. Maxillofac. Surg., vol. 58, no. 9, pp. 992 – 996, Sep. 2000.
    DOI: 10.1053/joms.2000.8742
    PMid: 10981979
  7. M. Kazkayasi, A. Ergin, M. Ersoy, O. Bengi, I. Tekdemir and A. Elhan, “Certain anatomical relations and the precise morphometry of the infraorbital foramen - canal and groove: an anatomical and cephalometric study,” Laryngoscope, vol. 111, no. 4, pp. 609 – 614, Apr. 2001.
    DOI: 10.1097/00005537-200104000-00010
    PMid: 11359128
  8. B. Cutright, N. Quillopa and W. Schubert, “An antropometric analysis of the key foramina for maxillofacial surgery,” J. Oral. Maxillofac. Surg., vol. 61, no. 3, pp. 354 – 357, Mar. 2003.
    DOI: 10.1053/joms.2003.50070
    PMid: 12618976
  9. S. Agthong, T. Huanmanop and V. Chentanez, “Anatomical variations of the supraorbital, infraorbital and mental foramina related to the gender and side,” J. Oral. Maxillofac. Surg., vol. 63, no. 6, pp. 800 – 804, Jun. 2005.
    DOI: 10.1016/j.joms.2005.02.016
    PMid: 15944977
  10. T. Gupta, “Localization of the important facial foramina encountered in maxillo-facial surgery,” Clin. Anat., vol. 21, no. 7, pp. 633 – 644, Oct. 2008.
    DOI: 10.1002/ca.20688
    PMid: 18773483
  11. B. R. Chrcanovic, M. H. Nogueira, G. Abreu and A. L. N. Custodio, “A morphometric analysis of the supraorbital and infraorbital foramina relative to surgical landmarcs,” Surg. Radiol. Anat., vol. 33, no. 4, pp. 329 – 335, May 2011.
    DOI: 10.1007/s00276-010-0698-1
    PMid: 20625730
  12. A. Aggarwal et al., “Anatomical study of the infraorbital foramen: a basis for successful infraorbital nerve block,” Clin. Anat., vol. 28, no. 6, pp. 753 – 760, Sep. 2015.
    DOI: 10.1002/ca.22558
    PMid: 26119635
  13. S. H. Hwang et al., “Morphometric analysis of the infraorbital groove, canal, and foramen on three-dimensional reconstruction of computed tomography scans,” Surg. Radiol. Anat., vol. 35, no. 7, pp. 565 – 571, Sep. 2013.
    DOI: 10.1007/s00276-013-1077-5
    PMid: 23404562
  14. H. Jung et al., “Quantitative analysis of three-dimensional rendered imaging of the human skull acquired from multi-detector row computed tomography,” J. Digit. Imaging, vol. 15, no. 4, pp. 232 – 239, Dec. 2002.
    DOI: 10.1007/s10278-002-0031-6
    PMid: 12532254
    PMCid: PMC3611620
  15. S. Perandini, N. Faccioli, A. Zaccarella, T. Re and R. P. Mucelli, “The diagnostic contribution of CT volumetric rendering techniques in routine practice,” Indian. J. Radiol. Imaging, vol. 20, no. 2, pp. 92 – 97, May 2010.
    DOI: 10.4103/0971-3026.63043
    PMid: 20607017
    PMCid: PMC2890933
  16. B. S. Kuszyk, D. G. Heath, D. F. Bliss and E. K. Fishman, “Skeletal 3-D CT: advantages of volume rendering over surface rendering,” Skeletal. Radiol., vol. 25, no. 3, pp. 207 – 214, Apr. 1996.
    DOI: 10.1007/s002560050066
    PMid: 8741053
  17. J. K. Berge and R. A. Bergman, “Variations in size and in symmetry of foramina of the human skull,” Clin. Anat., vol. 14, no. 6, pp. 406 – 413, Nov. 2001.
    DOI: 10.1002/ca.1075
    PMid: 11754234
  18. A. B. Berry, “Factors affecting the incidence of non-metrical skeletal variants,” J. Anat., vol. 120, no. 3, pp. 519 – 535, Dec. 1975.
    Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1231693/pdf/janat00377-0100.pdf;
    Retrieved on: Feb. 12, 2017.
  19. A. Carolineberry and R. J. Berry, “Epygenetic variations in the human cranium,” J. Anat., vol. 101, no. 2, pp. 361 – 379, Apr. 1967.
    Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1270890/pdf/janat00410-0155.pdf;
    Retrieved on: Feb. 12, 2017.
  20. T. J. Leo, M. Cassell and R. A. Bergman, “Variation in human infraorbital nerve, canal and foramen,” Ann. Anat., vol. 177, no. 1, pp. 93 – 95, Jan. 1995.
    DOI: 10.1016/S0940-9602(11)80139-1
  21. M. Kazkayasi, A. Ergin, M. Ersoy, I. Tekdemir and A. Elhan, “Microscopic anatomy of the infraorbital canal, nerve, and foramen,” Otolaryngol. Head. Neck. Surg., vol. 129, no. 6, pp. 629 – 697, Dec. 2003.
    DOI: 10.1016/S0194-5998(03)01575-4
  22. M. L. Lynch, S. A. Syverud, R. A. Schwab, J. M. Jenkins and R. Edlich, “Comparison of intraoral and percutaneous approaches for infraorbital nerve block,” Acad. Emerg. Med., vol. 1, no. 6, pp. 514 – 519, Nov-Dec. 1994.
    Retrieved from: http://onlinelibrary.wiley.com/doi/10.1111/j.1553-2712.1994.tb02543.x/pdf;
    Retrieved on: Feb. 12, 2017


Ippolita Valentina Di Molfetta, Stefano Del Monte, Antonino Guerrisi, Giuseppe Guglielmo Aloise, Anna Forbidussi, Domenico Vito Di Molfetta, Basilio Lippi

Pages: 210-213

DOI: 10.21175/RadJ.2017.03.042

Received: 17 FEB 2017, Accepted: 27 MAY 2017, Published online: 23 DEC 2017

The evaluation of chronic aortic diseases, many protocols of low radiation dose and low medium iodined contrast dose are performed. The main aim of this study is to give a preliminary evaluation of dose reduction and iodined dose reduction. In our Hospital from February 2013 to November 2016 we selected 150 patients divided into two groups: 60 for our study and group of control of 90 cases. All CT examinations were performed with a 64-MDCT scan. (Optima-CT GE Healtcare) Tube voltage was reduced in our study (80 kVp versus 120 in our standard) with automated current modulation system in both groups. Concerning the iodined dose reduction, in the study groups it is strongly reduced (40 cc of 370 mg/ml versus 90 cc of 370 mg/ml): a mechanical power injector was used to administer contrast material via catheters (20-gauge) placed in antecubital vein at a flow rate of 4.5 ml/sec Two radiologists qualitaively graded image quality of all cases defining the walls and enhancement of the lumen of the aorta. On the basis of criteria reported in the literature a five point subjective scale was used to grade image quality, from excellent (1) to non diagnostic quality(5). The reasons for degraded image quality were due to high BMI and consisted expecially in low signal/noise ratio and in two cases it was due to suboptimal contrast enhancement owing to poor bolus timing. In the cases of low signal/noise ratio a smooth filter was applied to reduce the noise The results of this study provide useful information about reduction of radation dose and medium iodined constrast. Diagnostic quality of scan performed with low dose of iodine and radiation are overlays with the scans performed with standard protocol. The study groups revealed a strong reduction dose in terms of DLP and quality of images was similar to the group of control.
  1. D. Marin et al.,“Low-Tube-Voltage, HighTube-current Multidetector Abdominal CT: Improved Image Quality and Decreased Radiation Dose with Adaptive Statistical Iterative Reconstruction Algorithm—Initial Clinical Experience,” Radiology, vol. 254, no. 1, pp. 145 – 153, Jan. 2010.
    DOI: 10.1148/radiol.09090094
    PMid: 20032149
  2. D. Ippolito et al., “Low kV settings CT angiography (CTA) with low dose contrast medium volume protocol in the assesment of thoracic and abdominal aorta disease: a feasibility study,” Br. J. Radiol., vol. 88, no. 1049, 20140140, May 2015.
    DOI: 10.1259/bjr.20140140
    PMCid: PMC4628465
  3. A. Seehofnerova at al., “Feasibility of low contrast media volume in CT angiography of the aorta,” Eur. J. Radiol. Open, vol. 2, pp. 58 – 65, Apr. 2015.
    DOI: 10.1016/j.ejro.2015.03.001
    PMid: 26937437
    PMCid: PMC4750622
  4. E. Cakmackci et al., “CT-angiography protocol with low dose radiation and low volume contrast medium for non-cardiac chest pain,” Quant. Imaging Med. Surg., vol. 4, no. 5, pp. 307 – 312, 2014.
    DOI: 10.1016/j.ejro.2015.03.001
    PMid: 26937437
    PMCid: PMC4750622
  5. M. Yamamuro et al., “Coronary Angiography by 64-Detector Row Computed Tomography Using Low Dose of Contrast Material with Saline Chaser: Influence of Total Injection Volume on Vessel Attenuation,” J. Comput. Assist. Tomogr., vol. 31, no. 2, pp. 272 – 280, Mar-Apr. 2007.
    DOI: 10.1097/01.rct.0000236422.35761.a1
    PMid: 17414766
  6. A. Winklehner et al., “Automated attenuation-based tube potential selection for Thoracoabdominal computed tomography angiography,” Invest. Radiol., vol. 46, no. 12, Dec. 2011.
    DOI: 10.1097/RLI.0b013e3182266448
    PMid: 21730872
  7. T. B. Kyongtae, “Intravenous cotrast medium administation and scan timing at CT: Consideratins and Approaches,” Radiology, vol. 256, no. 1, pp. 32 – 61, Jul. 2010.
    DOI: 10.1148/radiol.10090908
    PMid: 20574084
  8. Y. Nakayama et al., “Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography,” AJR Am. J. Roentgenol., vol. 187, no. 5, pp. W490 – W497, Nov. 2006.
    DOI: 10.2214/AJR.05.0471
    PMid: 17056879
  9. Y. Shen et al., “High-Pitch, Low-Voltage and Low-Iodine-Concentration CT Angiography of Aorta: Assessment of Image Quality and Radiation Dose with Iterative Reconstruction,” PLoS ONE, vol. 10, no. 2, e0117469, Feb. 2015. DOI: 10.1371/journal.pone.0117469
    PMid: 25643353
    PMCid: PMC4314070
  10. M. M. Mourits et al., “Reducing contrast medium volume and tube voltage in CT angiography of pumonary artery,” Clin. Radiol., vol. 71, no. 6, p. 615, Jun. 2016.
    DOI: 10.1016/j.crad.2016.03.005
    PMid: 27059387


E. A. Maslyukova, L. I. Korytova, A. V. Bondarenko, O. V. Korytov, E. M. Muravnik

Pages: 214-219

DOI: 10.21175/RadJ.2017.03.043

Received: 7 FEB 2017, Received revised: 19 MAY 2017, Accepted: 20 JUN 2017, Published online: 23 DEC 2017

The aim of this paper is to compare the levels of radiation exposure in three variants of BC (breast cancer) exposure. The study involves dosimetric radiotherapeutic (RT) plans of 20 female patients with left BC. Pre-irradiation preparation included 3 sessions of CT scan: patient in standard dorsal position with tidal respiration (STR), in dorsal position with controlled breathhold on top inspiration (DBH) and in prone position with tidal respiration (PTR). 3D-plan dosimetric calculations were performed for three CT-sessions. Dose-volumetric measures for organs at risk (OAR) were assessed for every irradiation option. Contoured heart volume in all studied variants varied within 477 cm3 - 1056 cm3, mean volume of 769 cm3. The best values, such as V25, average doses per heart and LAD (Left arteria descending) were received using DBH method (V25 heart 4.26%, D mean heart 3.13 Gy, DmeanLAD 13.8 Gy) as compared to STR method (V25 heart 9,49%, D mean heart 4.97Gy, DmeanLAD 19.55Gy) and PTR-position (V25 heart 12,8%, Dmean heart 9.06Gy, DmeanLAD 24.18Gy) (V25 heart P = 0.00153, D mean heart: P =0.000; D mean LAD: P = 0.00088), with the inclusion of Mamma Glandule (MG) and axillary LN in the total volume. The preferences of STR- and DBH-related dosimetric values remained unchanged followed by the inclusion of supraclavicular and infraclavicular lymph nodes (LN) in the total volume. DBH method (V25 heart 3.49%, D mean heart 3.07Gy, DmeanLAD 13.88Gy) was compared to STR method (V25 heart 7.91%, D mean heart 4.99 Gy, DmeanLAD 19.89Gy) (V25 heart P = 0.00205, D mean heart: P =0.004; D mean LAD: P = 0.03). Irradiation in dorsal position was performed with controlled breath hold while full inspiration was associated with a statistically significant decrease of the heart volume, which was exposed to more than 25 Gy (V25heart), average heart dose, average LAD dose.
  1. B. Fisher. et al., “Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer,” N. Engl. J. Med., vol. 347, no. 16, pp. 1233 – 1241, Oct. 2002.
    DOI: 10.1056/NEJMoa022152
    PMid: 12393820.
  2. M. Clarke, R. Collins, S. Darby et al., “Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomized trials,” Lancet, vol. 366, no. 9503, pp. 2087 – 2106, Dec. 2005.
    DOI: 10.1016/S0140-6736(05)67887-7
  3. L. P. Muren et al., “Cardiac and pulmonary doses and complication probabilities in standard and conformal tangential irradiation in conservative management of breast cancer,” Radiother. Oncol., vol. 62, no.2, pp. 173 – 183, Feb. 2002.
    DOI: 10.1016/S0167-8140(01)00468-6
    PMid: 11937244
  4. L. K. Schubert et al., “Dosimetric comparison of left-sided whole breast irradiation with 3DCRT, forward-planned IMRT, inverse-planned IMRT, helical tomotherapy, and topotherapy,” Radiother. Oncol., vol. 100, no.2, pp. 241 – 246, Aug. 2011.
    DOI: 10.1016/j.radonc.2011.01.004
    PMid: 21316783
  5. C. W. Taylor et al., “Cardiac dose from tangential breast cancer radiotherapy in the year 2006,” Int. J. Radiat. Oncol. Biol. Phys., vol. 72, no. 2, pp. 501 – 507, Oct. 2008.
    DOI: 10.1016/j.ijrobp.2007.12.058
    PMid: 18374500
  6. Y. Yin et al., “Dosimetric research on intensity-modulated arc radiotherapy planning for left breast cancer after breast-preservation surgery,” Med. Dosim., vol. 37, no. 3, pp. 287 – 292, 2012.
    DOI: 10.1016/j.meddos.2011.11.001
    PMid: 22284640
  7. C. Ares et al., “Postoperative proton radiotherapy for localized and locoregional breast cancer: potential for clinically relevant improvements?” Int. J. Radiat. Oncol. Biol. Phys., vol. 76, no. 3, pp. 685 – 697, Mar. 2010.
    DOI: 10.1016/j.ijrobp.2009.02.062
    PMid: 19615828
  8. A. J. Hayden et al., “Deep inspiration breath hold technique reduces heart dose from radiotherapy for left-sided breast cancer,” J. Med. Imaging Radiat. Oncol., vol. 56, no. 4, pp. 464 – 472, Aug. 2012.
    DOI: 10.1111/j.1754-9485.2012.02405.x
    PMid: 22883657
  9. S. C. Darby et al., “Risk of ischemic heart disease in women after radiotherapy for breast cancer,” New Engl. J. Med., vol. 368, no. 11, pp. 987 – 998, Mar. 2013.
    DOI: 10.1056/NEJMoa1209825
    PMid: 23484825
  10. S. S. Korreman et al., “Reduction of cardiac and pulmonary complication probabilities after breathing adapted radiotherapy for breast cancer,” Int. J. Radiat. Oncol. Biol. Phys., vol. 65, no. 5, pp. 1375 – 1380, Aug. 2006.
    DOI: 10.1016/j.ijrobp.2006.03.046
    PMid: 16750314
  11. A. M. Kirby et al., “Prone versus supine positioning for whole and partial breast radiotherapy: a comparison of non-target tissue dosimetry,” Radiother. Oncol., vol. 96, no. 2, pp. 178 – 184, Aug. 2010.
    DOI: 10.1016/j.radonc.2010.05.014
    PMid: 20561695
  12. S. C. Lymberis et al., “Prospective assessment of optimal individual position (prone versus supine) for breast radiotherapy: Volumetric and dosimetric correlations in 100 patients,” Int. J. Radiat. Oncol. Biol. Phys., vol. 84, no. 4, pp. 902 – 909, Nov. 2012.
    DOI: 10.1016/j.ijrobp.2012.01.040
    PMid: 22494590
  13. J. P. Chino, L. B. Marks, “Prone positioning causes the heart to be displaced anteriorly within the thorax: implications for breast cancer treatment,” Int. J. Radiat. Oncol. Biol. Phys., vol. 70, no. 3, pp. 916 – 920, Mar. 2008.
    DOI: 10.1016/j.ijrobp.2007.11.001
  14. M. Feng et al., “Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer,” Int. J. Radiat. Oncol. Biol. Phys., vol. 79, no. 1, pp. 10 – 18, Jan. 2011.
    DOI: 10.1016/j.ijrobp.2009.10.058
    PMid: 20421148
    PMCid: PMC2937165
  15. J. Buijsen et al. “Prone breast irradiation for pendulous breasts,” Radiother. Oncol., vol. 82, no. 3, pp. 337 – 340, Mar. 2007.
    DOI: 10.1016/j.radonc.2006.08.014
    PMid: 16978722
  16. S. C. Formenti et al., “Prone vs. supine positioning for breast cancer radiotherapy,” JAMA, vol. 308, no. 9, pp. 861 – 863, Sep. 2012.
    DOI: 10.1001/2012.jama.10759
    PMid: 22948692
  17. K. L. Griem et al., “Three-dimensional photon dosimetry: a comparison of treatment of the intact breast in the supine and prone position,” Int. J. Radiat. Oncol. Biol. Phys., vol. 57, no. 3, pp. 891 – 899, Nov. 2003.
    DOI: 10.1016/S0360-3016(03)00723-5
    PMid: 14529796
  18. A. M. Kirby et al., “A randomised trial of supine versus prone breast radiotherapy (SuPr study): comparing set-up errors and respiratory motion,” Radiother. Oncol., vol. 100, no. 2, pp. 221 – 226, Aug. 2011.
    DOI: 10.1016/j.radonc.2010.11.005
    PMid: 21159397
  19. S. S. Korreman et al., “Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique,” Radiother. Oncol., vol. 76, no. 3, pp. 311 – 318, Sep. 2005.
    DOI: 10.1016/j.radonc.2005.07.009
    PMid: 16153728
  20. N. Mason et al., “A prone technique for treatment of the breast supraclavicular and axillary nodes,” J. Med. Imaging Radiat. Oncol., vol. 56, no. 3, pp. 362 – 367, Jun. 2012.
    DOI: 10.1111/j.1754-9485.2012.02389.x
    PMid: 22697337
  21. A. N. Pedersen et al., “Breathing adapted radiotherapy of breast cancer: reduction of cardiac and pulmonary doses using voluntary inspiration breath-hold,” Radiother. Oncol., vol. 72, no. 1, pp. 53 – 60, Jul. 2004.
    DOI: 10.1016/j.radonc.2004.03.012
    PMid: 15236874
  22. L. D. Stegman et al., “Longterm clinical outcomes of whole-breast irradiation delivered in the prone position,” Int. J. Radiat. Oncol. Biol. Phys., vol. 68, no. 1, pp. 73 – 81, May 2007.
    DOI: 10.1016/j.ijrobp.2006.11.054
    PMid: 17337131
  23. K. Verhoeven et. al., “Breathing adapted radiation therapy in comparison with prone position to reduce the doses to the heart, left anterior descending coronary artery, and contralateral breast in whole breast radiation therapy,” Practical Radiation Oncology, vol. 4, no. 2, pp. 123 – 129, Mar-Apr. 2014.
    DOI: 10.1016/j.prro.2013.07.005
    PMid: 24890353
  24. V. M. Remouchamps et al., “Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation,” Int. J. Radiat. Oncol. Biol. Phys., vol. 55, no. 2, pp. 392 – 406, Feb. 2003.
    DOI: 10.1016/S0360-3016(02)04143-3
    PMid: 12527053
  25. D. Latty et. al., “Review of deep inspiration breath-hold techniques for the treatment of breast cancer,” J. Med. Radiat. Sci., vol. 62, no. 1, pp. 74 – 81, Mar. 2015.
    DOI: 10.1002/jmrs.96
    PMid: 26229670
    PMCid: PMC4364809
  26. J. Vikström et al., “Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage,” Acta Oncol., vol. 50, no. 1, pp. 42 – 50, 2011.
    DOI: 10.3109/0284186X.2010.512923
    PMid: 20843181
Environmental Physics


Marija Čargonja, Gordana Žauhar, Ivica Orlić

Pages: 220-225

DOI: 10.21175/RadJ.2017.03.044

Received: 24 FEB 2017, Received revised: 14 MAY 2017, Accepted: 5 JUL 2017, Published online: 23 DEC 2017

In this study, fine particulate matter (PM2.5) was collected inside the metal workshop located in the suburb of the City of Rijeka, Croatia. The high intensity of welding and plasma cutting is characteristic for this metal workshop and, therefore, high levels of very fine metal aerosols were expected. The fine aerosol sampling on thin Teflon filters and subsequent XRF elemental analysis were performed. The sampling in the workshop was conducted in two sampling periods in May and November 2016. In total, 64 samples were collected, out of which 28 were 12-hours samples and 36 were hourly samples. Additionally, Trotec Optical Particle Counter PC220 was used to measure concentrations for 6 different optical sizes (0.3 µm, 0.5 µm, 1 µm, 2.5 µm, 5 µm and 10 µm) to obtain the particle size distribution. The sample analysis was carried out with X-Ray Fluorescence technique at the Laboratory for Elemental Microanalysis at the Department of Physics, University of Rijeka. Heavy metals such as Ti, Cr, Mn, Fe, Ni, Cu, Zn and Pb were detected. The results were compared to the average daily concentrations measured in the city centre. Concentrations of all measured metals in indoor air in our study were significantly higher than in the samples collected outdoors. The highest indoor/outdoor ratio was obtained for Fe and Mn. Weekly and daily variations of heavy metal concentrations were also analysed. As expected, the results showed that weekly and diurnal variations of metal concentrations follow the work intensity in the workshop. The particle size distribution shows that sub-micron particles are present in much higher concentrations than coarse particles. This indicates the harmfulness of welding fumes.
  1. M. Žitnik et al., “Time-resolved measurements of aerosol elemental concentrations in indoor working environments,” Atmospheric Environ., vol. 44, no. 38, pp. 4954 – 4963, Dec. 2010.
    DOI: 10.1016/j.atmosenv.2010.08.017
  2. C. G. Helmis et al., “Indoor air quality in a dentistry clinic,” Sci. Total Environ., vol. 377, no. 2-3, pp. 349 – 365, May 2007.
    DOI: 10.1016/j.scitotenv.2007.01.100
    PMid: 17434576
  3. M. Sotiriou et al., “Measurement of particle concentrations in a dental office,” Environ. Monit. Assess., vol. 137, no. 1-3, pp. 351 – 361, Feb. 2008.
    DOI: 10.1007/s10661-007-9770-7
    PMid: 17505900
  4. B. Berlinger et al., “Psysicochemical characterization of different welding aerosols,” Anal. Bioanal. Chem., vol. 399, no. 5, pp. 1773 – 1780, Feb. 2011.
    DOI: 10.1007/s00216-010-4185-7
    PMid: 20845032
  5. S. Matsuyama et al., “Microbeam analysis of individual particles in indoor working environment,” X-Ray Spectrom., vol. 40, no. 3, pp. 172 – 175, May-Jun. 2011.
    DOI: 10.1002/xrs.1311
  6. J. M. Antonini, “Health effects of welding,” Crit. Rev. Toxicol., vol. 33, no. 1, pp. 61 – 103, 2003.
    DOI: 10.1080/713611032
  7. J. M. Antonini, S. S. Leonard, J. R. Roberts, C. Solano-Lopez, Sh H. Young, X. Shi, M. D. Taylor, “Effects of stainless steel manual metal arc welding fume on free radical production, DNA damage, and apoptosis induction,” Mol. Cell. Biochem., vol. 279, no. 1, pp. 17-23, Nov. 2005
    DOI: 10.1007/s11010-005-8211-6
  8. J. M. Antonini, A. B. Santamaria, N. T. Jenkins, E. Albini, R. Lucchini, “Fate of manganese associated with the inhalation of welding fumes: Potential neurological effects,” NeuroTiyicology, vol. 27, no. 3, pp. 304-310, May. 2006
    DOI: 10.1016/j.neuro.2005.09.001
  9. P-E. Näslund, S. Andreasson, R. Bergström, L. Smith, B. Risberg, “Effects of exposure to welding fume: an experimental study in sheep,” Eur. Respir. J., vol. 3, no. 7, pp. 800-806, Jul. 1990
  10. J. D. McNeilly, M. R. Heal, I. J. Beverland, A. Howe, M. D. Gibson, L. R. Hibbs, W. MacNee, K. Donaldson, “Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro,” Toxicology and Applied Pharmacology, vol. 196, no. 1, pp. 95-107, Apr. 2004
  11. D.D. Cohen, E. Stelcer, D. Garton, J. Crawford, “Fine particle characterization, source apportionment and long-range dust transport into the Sydney Basin: a long term study between 1998 and 2009,” Atmos. Poll. Res., vol. 2, no. 2, pp. 182–189, Apr. 2011
    DOI: 10.5094/APR.2011.023
    PMid: 12585507
  12. M. Čargonja, T. Ivošević, I. Orlić, “Two years (2013 – 2015) of fine aerosol monitoring in Rijeka, Croatia,” in Proc. International Congress Energy and the Environment, Opatija, Croatia, 2016, pp. 49 – 58.
    Retrieved from: http://bib.irb.hr/datoteka/884381.Zbornik_EE2016.pdf;
    Retrieved on: Apr. 25, 2017
  13. T. Ivošević, I. Orlić, I. Bogdanović Radović, “Long term fine aerosol analysis by XRF and PIXE techniques in the city of Rijeka, Croatia,” Nucl. Instr. Meth. Phys. Res. B, vol. 363, pp. 119 – 123, Nov. 2015.
    DOI: 10.1016/j.nimb.2015.08.030
  14. P. Van Espen, K. Janssens, J. Nobels, “AXIL-PC, software for the analysis of complex X-ray spectra,” Chemom. Intell. Lab. Syst., vol. 1, no. 1, pp. 109 – 114, Nov. 1986.
    DOI: 10.1016/0169-7439(86)80031-4
  15. F. Mazzei et al., “A new methodological approach: The combined use of two-stage streaker samplers and optical particle counters for the characterization of airborne particulate matter,” Atmospheric Environ., vol. 41, no. 26, pp. 5525 – 5535, Aug. 2007.
    DOI: 10.1016/j.atmosenv.2007.04.012
  16. M.-H. Lee, W. J. McClellan, J. Candela, D. Andrews, P. Biswas, “Reduction of nanoparticle exposure to welding aerosols by modification of the ventilation system in a workplace,” J. Nanopart. Res., vol. 9, no. 1, pp. 127 – 136, Jan. 2007.
    DOI: 10.1007/s11051-006-9181-7


V. N. Diomidova, O. V. Zakharova

Pages: 226-229

DOI: 10.21175/RadJ.2017.03.045

Received: 15 FEB 2017, Received revised: 9 MAY 2017, Accepted: 7 JUL 2017, Published online: 23 DEC 2017

The analysis of the data of uterus examination of 45 healthy women of reproductive age was carried out; 22 of the patients were practically healthy nulliparous women, 23 of the patients were healthy parous women (1 or 2 children). The age of the patients ranged from 24 to 48 years of age (mean age 33.9 ± 2.9 years). A comprehensive ultrasound examination of the uterus and appendages with the use of ultrasound elastography and shear wave elastometry modes (SWE - Shear Wave Elastography) was carried out on the unit Aixplorer (Supersonic Imagine, France) using a сonvex abdominal transducer with the frequency range of 1.0-6.0 MHz and intracavitary vaginal broadband probe of 3-12 MHz. SWE results in the control group showed that the quantitative values of Young’s modulus of unmodified endometrium and myometrium in healthy women of reproductive age were not potentially dependant on various phases of menstrual cycle (ρ> 0.05). Young’s modulus values of the mucous in the cervix (endocervix) and uterus corpus (endometrium) differed significantly and in healthy women had greater values in the cervix (Emean 33.1 kPa; Emax 38.8 kPa; SD 1.9) rather than in the corpus of uterus (Emean 16.5 kPa; Emax 17.6 kPa; SD 1.0; ρ <0.05). Depending on the parity, healthy parous women had higher values of endometrium stiffness – Emean 17.5 kPa; Emax 35.5 kPa; SD 3.1 than nulliparous women – 16.1 kPa; 19.9 kPa; 0.7 (ρ <0.05). Quantitative values of Young's modulus of the myometrium in healthy patients were also higher in the cervix rather than in the corpus of uterus (Emean 42.3 kPa; Emax 52.4 kPa; SD 3.2 and Emean 22.3 kPa; Emax 29.3 kPa; SD 1.7; ρ <0.05 respectively). In the examination of women of reproductive age that was carried out on the basis of the data obtained from the use of elastography and shear wave elastometry technology, standard values for Young's modulus for an unmodified endometrium, endocervicx, myometrium of the uterus corpus and cervix in healthy women of reproductive age were defined.
  1. Е.В. Федорова, А.Д. Липман, А.И. Омельяненко, В.П. Шакунова, “Исследования маточного и яичникового кровотока у пациенток с бесплодием при лечении методами вспомогательных репродуктивных технологий. I. Исследование кровотока яичников, фолликула и желтого тела,” Ультразвуковая и функциональная диагностика, но. 3, стр. 133 – 141, 2002. (E. V. Fedorova, A. D. Lipman, A. I. Omelyanenko, V. P. Shakunova, “Study of uterine and ovarian blood flow in afetal patients when treating by subsidiary reproductive technologies. I. Study of blood flow in ovaries, follicle and yellow body,” Ultrasound Funct. Diag., no. 3, pp. 133 – 141, 2002.)
  2. Б. И. Зыкин, Н. А. Постнова, М. Е. Медведев, “Эластография: анатомия метода,” Променева діагностика, променева терапія, но. 3, стр. 107 – 113, 2012. (B. I. Zykin, N. A. Postnova, M. E. Medvedev, “Elastography: anatomy of the method,” Radiat. Diag. Radiat. Ther., no. 3, pp. 107 – 113, 2012.)
    Retrieved from: https://rehamed.in.ua/images/Pdpt_2012_2-3_24.pdf;
    Retrieved on: Jan. 28, 2017
  3. В.В. Митьков, А.К. Васильева, М.Д. Митькова, “Механические (упругие) свойства предстательной железы при эластографии сдвиговой волны,” Ультразвуковая и функциональная диагностика, но. 6, стр. 16 – 20, 2012. (V. V. Mit`kov, A. K. Vasil`eva, M. D. Mit`kova, “Mechanical (elastic) properties of the prostate gland at shear wave elastography,” Ultrasound Funct. Diag., no. 6, pp. 16 – 20, 2012.)
  4. В. В. Митьков, Т. В. Иванишина, М. Д. Митькова, “Ультразвуковое исследование неизмененной щитовидной железы с применением технологии эластографии сдвиговой волной,” Ультразвуковая и функциональная диагностика, но. 6, стр. 13 – 20, 2012. (V. V. Mit`kov, T. V. Ivanishina, M. D. Mit`kova, “Ultrasound examination of unchanged thyroid gland using shear wave elastography technique,” Ultrasound Funct. Diag., no. 6, pp. 13 – 20, 2014.)
  5. В. Н. Диомидова, О. В. Петрова, “Сравнительный анализ результатов эластографии сдвиговой волной и транзиентной эластографии в диагностике диффузных заболеваний печени,” Ультразвуковая и функциональная диагностика, но. 5, стр. 17 – 24, 2013. (V. N. Diomidova, O. V. Petrova, “Comparative results’ analysis of shear wave elastography and transient elastography in diagnosis of diffuse liver diseases,” Ultrasound Funct. Diag., no. 5, pp. 17 – 24, 2013.)
  6. Б. И. Зыкин, Н. А. Постнова, “Значение цветового картирования жесткости печеночной ткани при проведении исследований с помощью эластографии сдвиговой волной у больных гепатитом С,” Ультразвуковая и функциональная диагностика, но. 5, стр. 24 – 30, 2013. (B. I. Zykin, N. A. Postnova, “Significance of liver tissue rigidity color mapping when performing examination with shear wave elastography in hepatitis C patients,” Ultrasound Funct. Diag., no. 5, pp. 24 – 30, 2013.)
  7. Ю. В. Кабин, А. И. Громов, В. В. Капустин, “Первый опыт применения ультразвуковой эластографии сдвиговой волной в диагностике рака молочной железы,” Ультразвуковая и функциональная диагностика, но. 5, стр. 79 – 84, 2013. (Yu. V. Kabin, A. I. Gromov, V. V. Kapustin, “Shear wave elastography in breast cancer diagnosis (first experience), Ultrasound Funct. Diag., no. 5, pp. 79 – 84, 2013.)
  8. В. В. Митьков, К. А. Чубарова, Н. В. Заболотская, М. Д. Митькова, Н. В. Яурова, “Информативность ультразвуковой эластографии сдвиговой волной в диагностике рака молочной железы,” Ультразвуковая и функциональная диагностика, но. 1, стр. 11 – 24, 2014. (V. V. Mit`kov, K. A. Chubarova, N. V. Zabolotskaja, M. D. Mit`kova, N. V. Jaurova, “Informativity of ultrasound shear wave elastography in breast cancer diagnosis,” Ultrasound Funct. Diag., no. 1, pp. 11 – 24, 2014.)
  9. Е. В. Феоктистова, М. И. Пыков, А. А. Амосова, М. А. Тарасов, М. М. Дубровин, “Применение ARFI-эластографии для оценки жесткости печени у детей различных возрастных групп,” Ультразвуковая и функциональная диагностика, но. 6, стр. 46 – 56, 2013. (E. V. Feoktistova, M. I. Pykov, A. A. Amosova, M. A. Tarasov, M. M. Dubrovin, “Application of ARFI-elastography to assess liver rigidity in children of different age groups,” Ultrasound Funct. Diag., no. 6, pp. 46 – 56, 2013.)
  10. Е. А. Вишленкова, Г. Т. Синюкова, Т. Ю. Данзанова, “Ультразвуковая эластометрия и эластография у пациентов с метастазами колоректального рака в печени на фоне химиотерапии перед операцией и в удаленном макропрепарате,” Ультразвуковая и функциональная диагностика, но. 4, стр. 25 – 30, 2014. (E. A. Vishlenkova, G. T. Sinjukova, T. Yu. Danzanova, “Ultrasound elastometry and elastography in patients with liver metastases of colorectal cancer during chemotherapy before the surgery and in removed gross specimen,” Ultrasound Funct. Diag., no. 4, pp. 25 – 30, 2014.)
  11. В. В. Митьков, С. А. Хуако, Э. Р. Ампилогова, М. Д. Митькова, “Оценка воспроизводимости результатов количественной ультразвуковой эластографии,” Ультразвуковая и функциональная диагностика, но. 2, стр. 115 – 121, 2011. (V. V. Mit`kov, S. A. Huako, E. R. Ampilogova, M. D. Mit`kova, “Reproducibility evaluation of quantitative ultrasonic elastography results,” Ultrasound Funct. Diag., no. 2, pp. 115 – 121, 2011.)
  12. В. В. Митьков, С. А. Хуако, С. Э. Саркисов, М. Д. Митькова, “Количественная оценка эластичности миометрия в норме,” Ультразвуковая и функциональная диагностика, но. 5, стр. 14 – 19, 2011. (V. V. Mit`kov, S. A. Huako, S. E. Sarkisov, M. D. Mit`kova, “Quantification of myometrium elasticity in the norm,” Ultrasound Funct. Diag., no. 5, pp. 14 – 19, 2011.)
  13. В. В. Митьков, С. А. Хуако, С. Э. Саркисов, М. Д. Митькова, “Возможности эластографии и эластометрии сдвиговой волны в диагностике аденомиоза,” Ультразвуковая и функциональная диагностика, но. 6, стр. 22 – 28, 2011. (V. V. Mit`kov, S. A. Huako, S. E. Sarkisov, M. D. Mit`kova, “Opportunities of elastography and shear wave elastometry in diagnosis of adenomyosis,” Ultrasound Funct. Diag., no. 6, pp. 22 – 28, 2011.)
  14. В. В. Митьков, С. А. Хуако, С. Е. Цыганов, Т. А. Кириллова, М. Д. Митькова, “Сравнительный анализ данных эластографии сдвиговой волной и результатов морфологического исследования тела матки (предварительные результаты),” Ультразвуковая и функциональная диагностика, но. 5, стр. 99 – 114, 2013. (V. V. Mit`kov, S. A. Huako, S. E. Cyganov, T. A. Kirillova, M. D. Mit`kova, “Comparative analysis of shear wave elastography data and uterine body morphological study results (preliminary results),” Ultrasound Funct. Diag., no. 5, pp. 99 – 114, 2013.)
  15. L. C. Carlson et al., “Estimation of shear wave speed in the human uterine cervix,” Ultrasound Obstet. Gynecol., vol. 43, no. 4, pp. 452 – 458, Apr. 2014.
    DOI: 10.1002/uog.12555
    PMid: 23836486
    PMCid: PMC3894258
  16. E. Hernandez-Andrade et al., “Effect of depth on shear-wave elastography estimated in the internal and external cervical os during pregnancy,” J. Perinat. Med., vol. 42, no. 5, pp. 549 – 557, Sep. 2014.
    DOI: 10.1515/jpm-2014-0073
    PMid: 25029081
    PMCid: PMC4183447

Short notes



Kei Wakimura, Mikio Kato

Pages: 230-232

DOI: 10.21175/RadJ.2017.03.046

Received: 15 FEB 2017, Received revised: 30 MAY 2017, Accepted: 4 JUL 2017, Published online: 23 DEC 2017

We had previously found that the bacterial flagellar motor is resistant to ionizing radiation at a dose that is sufficient to inhibit bacterial growth. This implies that some enzymatic activity remains after irradiation to maintain the metabolic network in cells. In the present study, to estimate the persistence of bacterial motility after irradiation, we investigated the swimming ability of gamma-irradiated cells after maintenance in a non-nutrient motility medium for several hours at room temperature or at 4 °C. Hence, the motility of the gamma-irradiated cells, which showed no colony-forming ability, lasted for more than 1 day. Swimming speed and the motile fraction were not significantly different between intact (unirradiated) and irradiated cells, whereas these parameters decreased gradually with incubation time. Cells stored at 4 °C did not swim; however, motility was recovered after bacteria reached room temperature.
  1. H. C. Berg and R. A. Anderson, “Bacteria swim by rotating their flagellar filaments,” Nature, vol. 245, no. 5425. pp. 380 – 382, Oct. 1973.
    DOI: 10.1038/245380a0
    PMid: 4593496
  2. H. C. Berg, “The rotary motor of bacterial flagella,” Ann. Rev. Biochem., vol. 72, pp. 19 – 54, Jul. 2003.
    DOI: 10.1146/annurev.biochem.72.121801.161737
    PMid: 12500982
  3. B. Alberts et al., “Electron-transport chains and their proton pumps,” in Molecular Biology of the Cell, 4th ed., New York (NY), USA: Garland Science, 2002, ch. 14, sec. 2.
    Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK26904/;
    Retrieved on: Jan. 26, 2017
  4. M. W. Schilling et al., “Effects of ionizing radiation and hydrostatic pressure on Escherichia coli O157:H7 inactivation, chemical composition, and sensory acceptability of ground beef patties,” Meat Sci., vol. 81, no. 4, pp. 705 – 710, Apr. 2009.
    DOI: 10.1016/j.meatsci.2008.10.023
    PMid: 20416567
  5. J. Cadet, T. Douki, D. Gasparutto, J.-L. Ravanat, “Radiation-induced damage to cellular DNA: measurement and biological role,” Radiat. Phys. Chem., vol. 72, no. 2-3, pp. 293 – 299, 2005.
    DOI: 10.1016/j.radphyschem.2003.12.059
  6. M. Kato, W. Meissl, K. Umezawa, T. Ikeda and Y. Yamazaki, “Real-time observation of Escherichia coli cells under irradiation with a 2-MeV H+ microbeam,” Appl. Phys. Lett., vol. 100, 193702, May 2012.
    DOI: 10.1063/1.4714911
  7. T. Atsumi, E. Fujimoto, M. Furuta and M. Kato, “Effect of gamma-ray irradiation on Escherichia coli motility,” Cent. Eur. J. Biol., vol. 9, no. 10, pp. 909 – 914, Oct. 2014.
    DOI: 10.2478/s11535-014-0332-z
  8. M. Kato, “Effect of ionizing radiation on the motility of Escherichia coli,” in Microbes in the Spotlight: Recent Progress in the Understanding of Beneficial and Harmful Microorganisms, A. Méndez-Vilas, Ed., Boca Raton (FL), USA: BrownWalker Press, 2016, pp. 478 – 482.
  9. M. Kato and A. Futenma, “Expression of the lac Z gene in Escherichia coli irradiated with gamma rays,” J. Radiat. Res. Appl. Sci., vol. 7, no. 4, pp. 568 – 571, Oct. 2014.
    DOI: 10.1016/j.jrras.2014.09.008
  10. M. J. Giacalone et al., “The use of bacterial minicells to transfer plasmid DNA to eukaryotic cells,” Cell. Microb. vol. 8, no. 10, pp. 1624 – 1633, Oct. 2006.
    DOI: 10.1111/j.1462-5822.2006.00737.x
    PMid: 16984417
Radiation Effects


Flavia Novelli, Monia Vadrucci, Maria Manuela Rosado, Luigi Picardi, Eugenio Benvenuto, Claudio Pioli

Pages: 233-235

DOI: 10.21175/RadJ.2017.03.047

Received: 13 FEB 2017, Received revised: 4 MAY 2017, Accepted: 3 JUL 2017, Published online: 23 DEC 2017

One of the major problems derived from the exposure to ionizing radiation is the impairment of the immune system. The consequent immune-depression increases the risk of infections and may lead to immune-mediated disorders. The intensity and duration of the immune-compromised phase and its recovery depend on the dose, dose-rate and quality of radiation. In recent years, there has been a great interest in the effects induced by protons, both for a better assessment of the health risks in astronauts exposed to solar wind and cosmic radiations and for a better understanding of their effects in radiotherapy for oncologic patients. In the present study, we investigated the effects of the in vivo exposure to 2 Gy of integral dose absorbed by medium energy proton beams on mouse lymphoid spleen cells. The TOP-IMPLART accelerator was used as proton source. Irradiations were performed in air with pulsed (3.4 ms, 10Hz) 27 MeV proton beams. During the exposure, mice were anesthetized in order to keep them in the right position. Sham-exposed anesthetized age/gender/strain-matched mice were used as controls. Twenty-four hours and 1 week after irradiation, each mouse was individually analyzed for several parameters (5 mice/group). Results showed that the number of nucleated cells in the spleen was not significantly affected. Flow cytometry analyses revealed that the percentages of helper T (CD4), cytotoxic T (CD8) and B (CD19) cells within the spleen lymphocytes were not altered 24 hours after the exposure. At variance, 1 week after the exposure the frequency of CD4 (14% vs. 9%) and CD19 (37% vs. 26%) cells reduced. Spleen cells were stimulated with an anti-CD3 antibody and LPS to induce T cell and B cell activation, respectively. Both T and B cells were functionally impaired by the exposure. Twenty-four hours after irradiation, T cell proliferation was indeed reduced by 50% in exposed mice compared with controls. B cells also displayed a reduced cell proliferation in response to the mitogenic stimulus (-33%). Interestingly, 1 week after irradiation proliferative responses of T and B cells were still compromised. This first study allowed the conclusion that, in vivo local exposure to protons induced small changes in total spleen cell number, the frequency of CD4 and B cells being reduced 1 week after the exposure. More interesting, functional responses, such as T and B cell proliferation were partially compromised. These effects, in spite of the limited area of exposure, were not recovered after 1 week.
  1. N. Gueguinou et al., “Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond earth`s orbit?” J. Leukoc. Biol.,vol. 86, no. 5, pp. 1027 – 1038, Nov. 2009.
    DOI: 10.1189/jlb.0309167
    PMid: 19690292
  2. D. Frasca et al., “Hematopoietic reconstitution after lethal irradiation and bone marrow transplantation: effects of different hematopoietic cytokines on the recovery of thymus, spleen and blood cells,” Bone Marrow Transplant., vol. 25, no. 4, pp. 427 – 433, Feb. 2000.
    DOI: 10.1038/sj.bmt.1702169
    PMid: 10723587
  3. D. Frasca et al., “Use of hematopoietic cytokines to accelerate the recovery of the immune system in irradiated mice,” Exp. Hematol.,vol. 25, no. 11, pp. 1167 – 1171, Oct. 1997.
    PMid: 9328453
  4. D. Frasca et al., “IL-11 synergizes with IL-3 in promoting the recovery of the immune system after irradiation,” Int. Immunol., vol. 8, no. 11, pp. 1651 – 1657, Nov. 1996.
    DOI: 10.1093/intimm/8.11.1651
    PMid: 8943559
  5. P. Uma Devi, “Radiosensitivity of the developing haemopoietic system in mammals and its adult consequences: animal studies,” Br. J. Radiol., vol. 76, no. 906, pp. 366 – 372, Jun. 2003.
    DOI: 10.1259/bjr/42623440
    PMid: 12814921
  6. K. Manda et al., “Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells,” Front. Oncol., vol. 2, no. 102. Aug. 2012.
    DOI: 10.3389/fonc.2012.00102
  7. J. H. Ware et al., “Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice,” Radiat. Res., vol. 174, no. 3, pp. 325 – 330, Sep. 2010.
    DOI: 10.1667/RR1979.1
    PMid: 20726731
    PMCid: PMC3405897
  8. S. C. Formenti et al., “Systemic effects of local radiotherapy,” Lancet oncol., vol. 10, no. 7, pp. 718 – 726, Jul 2009.
    DOI: 10.1016/S1470-2045(09)70082-8
  9. F. Rodel et al., “Contribution of the immune system to bystander and non-targeted effects of ionizing radiation,” Cancer Lett., vol. 356, no. 1, pp. 105 – 113, Jan. 2015.
    DOI: 10.1016/j.canlet.2013.09.015
    PMid: 24139966
  10. M. Vadrucci et al., “Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and (60)Co gamma-rays,” Med. Phys., vol. 42, no. 8, pp. 4678 – 4684, Aug. 2015.
    DOI: 10.1118/1.4926558
    PMid: 26233195