Volume 3, Issue 3

Table of contents

Case study



G.A.P. Cirrone, G. Petringa, A. Attili, D. Chiappara, L. Manti, V. Bravatà, D. Margarone, M. Mazzocco, G. Cuttone

Pages: 147–151

DOI: 10.21175/RadJ.2018.03.025

Received: 13 OCT 2018, Received revised: 8 JAN 2019, Accepted: 12 JAN 2019, Published online: 28 FEB 2019

A work recently published experimentally demonstrates an increase in the radiobiological efficacy of clinical proton beams when a tumour is treated in the presence of a concentration of 11B. For the first time, this paper demonstrates the potential role of the p+11B —> 3α (for brevity, p-B) reaction in the biological enhancement of proton therapy effectiveness. The work reports robust experimental data in terms of clonogenic cell survival and chromosomal aberrations and unambiguously shows the presence of an enhancement when cells were exposed to a clinical proton beam subject to treatment with sodium boroncaptate (BSH). Moreover, the greater occurrence of complex-type chromosomal exchanges points to the effect in terms of radiation of a LET (Linear Energy Transfer) greater than that of protons alone, possibly the alpha particles generated by the reaction. At the same time, we emphasized that analytical calculations, performed on the basis of the well-known total production cross-section data, are not able to explain the effect in a macroscopic way, i.e., solely in terms of a trivial increase in the total dose released in the cells by the alpha-particles. In this paper, thanks to simulations and analytical calculations, we will discuss the theoretically expected alpha-particle yield and the corresponding LET and RBE (Relative Biological Effectiveness) increase related to the 11B presence. We conclude that a mere calculation based on the classical concepts of integral dose and average LET and RBE cannot be used to justify the observed radiobiological phenomena. We therefore suggest that micro- and nano-dosimetric aspects must be taken into account.
  1. D-K. Yoon, J-Y. Jung, T. S. Suh, “Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study,” Appl. Phys. Lett., vol. 105, no. 22, 223507, 2014, Dec. 2014.
    DOI: 10.1063/1.4903345
  2. L. Giuffrida et al., “Prompt gamma ray diagnostics and enhanced hadron-therapy using neutron-free nuclear reactions,” AIP Advances, vol.6, no. 10, pp. 105 – 204, Oct. 2016.
    DOI: 10.1063/1.4965254
  3. G. Petringa et al., “Study of gamma-ray emission by proton beam interaction with injected boron atoms for future medical imaging applications,” J. Instrumentation, vol.12, no. 3, C03049, Mar. 2017.
    DOI: 10.1088/1748-0221/12/03/C03049
  4. G. A. P. Cirrone et al., “First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness,” Sci. Rep., vol. 8, 1141, Jan. 2018.
    DOI: 10.1038/s41598-018-19258-5
    PMid: 29348437
    PMCid: PMC5773549
  5. S. Xuan et al., “Synthesis and in vitro studies of a series of carborane-containing boron dipyrromethenes (bodipys),” J. Med. Chem. vol. 59, no. 5, pp. 2109 – 2117, Feb. 2016.
    DOI: 10.1021/acs.jmedchem.5b01783
    PMid: 26849474
    PMCid: PMC4893941
  6. N. Otuka et al., “Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC),” Nucl. Data Sheets, vol. 120, pp. 272 – 276, Jun. 2014.
    DOI: 10.1016/j.nds.2014.07.065
  7. A. Koning et al., “Modern Nuclear Data Evaluation with the TALYS Code System,” Nucl. Data Sheets, vol. 113, no. 12, pp. 2841 – 2934, Dec. 2012.
    DOI: 10.1016/j.nds.2012.11.002
  8. S. Agostinelli et al., “Geant4-a simulation toolkit,” Nucl. Instrum. Methods A, vol. 506 pp. 250 – 303, 2003.
    DOI: 10.1016/S0168-9002(03)01368-8
  9. G. A. P. Cirrone et al., “Hadrontherapy: a Geant4-Based Tool for Proton/Ion-Therapy-studies,” Prog. Nucl. Sci. Technol., vol. 2, pp. 207 – 212, 2011.
    DOI: 10.15669/pnst.2.207
  10. Geant4, A Simulation Toolkit: Physics Reference Manual Release 10.4, CERN, Geneva, Switzerland, 2017.
    Retrieved from: http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsReferenceManual/fo/Physics ReferenceManual.pdf;
    Retrieved on: Aug. 10, 2018
  11. Physics List EM constructors in Geant4 10.4, CERN, Geneva, Switzerland, 2018.
    Retrieved from: https://geant4.web.cern.ch/node/1731#opt4;
    Retrieved on: Aug. 10, 2018
  12. D. Sanchez-Parcherisa et al., “Analytical calculation of proton linear energy transfer in voxelized geometries including secondary protons,” Phys. Med. Biol., vol. 61, no. 4, pp. 1705 – 1721, Feb. 2016.
    DOI: 10.1088/0031-9155/61/4/1705
    PMid: 26840945

Original research papers

Radiation in Medicine


M.V. Zhukovsky, Hesham M.H. Zakaly

Pages: 152–158

DOI: 10.21175/RadJ.2018.03.026

Received: 5 JUN 2018, Received revised: 22 NOV 2018, Accepted: 27 NOV 2018, Published online: 28 FEB 2019

The purpose was to assess the behavior of monoclonal antibodies (MAb) and their fragments labeled by 89Zr after injecting them into the human body for the purpose of positron emission tomography (PET), as well as to assess absorbed doses in organs and tissues with maximum radiation exposure. The biokinetic model has been built on the base reference data about the behavior of MAb and their fragments and on the literature data on the excretion of chelate complexes from the human body. The cumulative activity of 89Zr in organs and tissues per Bq of administered activity was calculated. For the most exposed organs, average absorbed doses for organs and tissues were calculated. The organs which had the highest doses, when 89Zr was injected into the human body associated with intact monoclonal antibodies, are the spleen, the liver, and the heart wall. The estimated doses on these organs are 1.69, 1.48 and 1.08 mGy/MBq, respectively. When the injection associated with the fragments of monoclonal antibodies is considered, the most exposed organs are the kidneys with the doses of 0.939 mGy/MBq for F(ab’)) and 0.920 mGy/MBq for F(ab')2.
  1. A. M. Wu, P. D. Senter, “Arming antibodies: prospects and challenges for immunoconjugates,” Nat. Biotechnol., vol. 23, no. 9, pp.1137 – 1146, Sep. 2005.
    DOI: 10.1038/nbt1141
    PMid: 16151407
  2. A. M. Wu, “Engineered antibodies for molecular imaging of cancer”, Methods, vol. 65, no. 1, pp. 139 – 147, Jan. 2014.
    DOI: 10.1016/j.ymeth.2013.09.015
    PMid: 24091005
    PMCid: PMC3947235
  3. T. J. Wadas, E. H. Wong, G. R. Weisman, C. J. Anderson, “Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease,” Chem. Rev. vol. 110, no. 5, pp. 2858 – 2902, Apr. 2010.
    DOI: 10.1021/cr900325h
    PMid: 20415480
    PMCid: PMC2874951
  4. Nuclear Decay Data for Dosimetric Calculations, ICRP Publication 107, ICRP, Ottawa, Canada, 2008.
    DOI: 10.1016/j.icrp.2008.10.004
    PMid: 19285593
  5. W. B. Cai et al., “Quantitative PET of EGFR expression in xenograft-bearing mice using Cu-64-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody,” Eur. J. Nucl. Med. Mol. Imaging, vol. 34, no. 6, pp. 850 – 858, Jun. 2007.
    DOI: 10.1007/s00259-006-0361-6
    PMid: 17262214
  6. P. Paudyal et al., “Imaging and biodistribution of Her2/neu expression in non-small cell lung cancer xenografts with 64Cu-labeled trastuzumab PET,” Cancer. Sci., vol. 101. no. 4, pp. 1045 – 1050, Apr. 2010.
    DOI: 10.1111/j.1349-7006.2010.01480.x
    PMid: 20219072
  7. P. K. E. Borjesson et al., “Performance of Immuno-Positron Emission Tomography with Zirconium-89 Labeled Chimeric Monoclonal Antibody U36 in the Detection of Lymph Node Metastases in Head and Neck Cancer Patients,” Clin. Cancer. Res.,vol. 12, no. 7, pp. 2133 – 2140, Apr. 2006.
    DOI: 10.1158/1078-0432.CCR-05-2137
    PMid: 16609026
  8. I. Verel et al., “High-quality 124I-labelled monoclonal antibodies for use as PET scouting agents prior to 131I-radioimmunotherapy,” Eur. J. Nucl. Med. Mol. Imaging, vol. 31, no. 12, pp. 1645 – 1652, Dec. 2004.
    DOI: 10.1007/s00259-004-1632-8
    PMid: 15290121
  9. J. P. Holland, M. J. Williamson, J. S. Lewis, “Unconventional Nuclides for Radiopharmaceuticals,” Mol. Imaging, vol. 9, no. 1, pp. 1 – 20, Jan. 2010.
    DOI: 10.2310/7290.2010.00008
    PMid: 20128994
    PMCid: PMC4962336
  10. W. E. Meijs, J. D. M. Herscheid, H. J. Haisma, H. M. Pinedo, “Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89,” Appl. Radiat. Isot., vol. 43, no. 12, pp. 1443 – 1447, Dec. 1992.
    DOI: 10.1016/0883-2889(92)90170-J
  11. C. R. Fletcher, “The radiological hazards of zirconium-95 and niobium-95,” Health Phys., vol. 16, no. 2, pp. 209 – 220, Feb. 1969.
    DOI: 10.1097/00004032-196902000-00011<
    PMid: 5772185
  12. S. M. Chiavenna, J. P. Jaworski, A. Vendrell, “State of the art in anti-cancer mAbs,” J. Biomed. Sci., vol. 24, no. 15, pp. 1 – 12, Feb. 2017.
    DOI: 10.1186/s12929-016-0311-y
  13. L. Lindenberg et al., “Dosimetry and first human experience with 89Zr-panitumumab,” Am. J. Nucl. Med. Mol. Imaging, vol. 7, no. 4, pp. 195 – 203, 2017.
    PMid: 28913158
    PMCid: PMC5596322
  14. Radiation Dose to Patients from radiopharmaceuticals: A Compendium of Current Information Related to Frequently Used Substances,ICRP Publication 128, ICRP, Ottawa, Canada, 2015.
    DOI: 10.1177/0146645314558019
    PMid: 26069086
  15. Human Alimentary Tract Model for Radiological Protection, ICRP Publication 100, ICRP, Ottawa, Canada, 2006.
    DOI: 10.1016/j.icrp.2006.03.004
    PMid: 17188183
  16. R. W. Leggett, “The biokinetics of inorganic cobalt in the human body,” Sci. Total Environ., vol. 389, no. 2-3, pp. 259 – 269, Jan. 2008.
    DOI: 10.1016/j.scitotenv.2007.08.054
    PMid: 17920105
  17. R. W. Leggett, “A biokinetic model for zinc for use in radiation protection,” Sci. Total Environ., vol. 420, pp. 1 – 12, Mar. 2012.
    DOI: 10.1016/j.scitotenv.2012.01.013
    PMid: 22326317
  18. W. B. Li, M. Greiter, U. Oeh, C. Hoeschen, “Reliability of a new biokinetic model of zirconium in internal dosimetry: part II, parameter sensitivity analysis,” Health Phys., vol. 101, no. 6. pp. 677 – 692, Dec. 2011.
    DOI: 10.1097/HP.0b013e318226edc0
  19. J. A. Carrasquillo et al., “(124)I-huA33 Antibody PET of Colorectal Cancer,” J. Nucl. Med., vol. 52, no. 8, pp. 1173 – 1180, Jul. 2011.
    DOI: 10.2967/jnumed.110.086165
    PMid: 21764796
    PMCid: PMC3394182
  20. A. L. Klibanov et al., “Blood Clearance of Radiolabeled Antibody: Enhancement by Lactosamination and Treatment with Biotin-Avidin or Anti-Mouse IgG Antibodies” J. Nucl. Med., vol. 29, no. 12, pp. 1951 – 1956, Dec. 1988.
    PMid: 2848113
  21. D. R. Mould, K. R. D. Sweeney, “The pharmacokinetics and pharmacodynamics of monoclonal antibodies – mechanistic modeling applied to drug development,” Curr. Opin. Drug Discov. Devel, vol. 10, no. 1, pp. 84 – 96, Jan. 2007.
    PMid: 17265746
  22. E. C. Dijkers et al., “Biodistribution of 89Zr-trastuzumab and PET Imaging of HER2-Positive Lesions in Patients With Metastatic Breast cancer,” Clin. Pharmacol. Ther., vol. 87, no. 5, pp. 586 – 592, May 2010.
    DOI: 10.1038/clpt.2010.12
    PMid: 20357763
  23. I. Buchmann et al., “A comparison of the biodistribution and biokinetics of 99mTc-anti-CD66 mAb BW 250/183 and 99mTc-anti-CD45 mAb YTH 24.5 with regard to suitability for myeloablative radioimmunotherapy,” Eur. J. Nucl. Med. Mol. Imaging, vol. 30, no. 5, pp. 667 – 673, May 2003.
    DOI: 10.1007/s00259-002-1106-9
    PMid: 12599012
  24. C.-A. Vogel et al., “Direct comparison of a radioiodinated intact chimeric anti-CEA MAb with its F(ab`)2, fragment in nude mice bearing different human colon cancer xenografts,” Br. J. Cancer, vol. 68, no. 4, pp. 684 – 690, Oct. 1993.
    DOI: 10.1038/bjc.1993.410
    PMid: 8398694
    PMCid: PMC1968595
  25. T. Olafsen et al., “Optimizing Radiolabeled Engineered Anti-p185HER2 Antibody Fragments for in vivo Imaging,” Cancer Res., vol. 65, no. 13, pp. 5907 – 5916, 2005.
    DOI: 10.1158/0008-5472.CAN-04-4472
    PMid: 15994969
    PMCid: PMC4161125
  26. J. W. Stathler et al., “The Retention of 14C-DTPA in Human Volunteers after Inhalation or Intravenous Injection,” Health Phys., vol. 44, no. 1. pp. 45 – 52, Jan. 1983.
    DOI: 10.1097/00004032-198301000-00006
  27. V. F. Khokhryakov et al., “Successful DTPA Therapy in the Case of 239Pu Penetration via Injured Skin Exposed to Nitric Acid,” Radiat. Prot. Dosim., vol, 105, no. 1-4, pp. 499 – 502, Jul. 2003.
    DOI: 10.1093/oxfordjournals.rpd.a006291
    PMid: 14527017
  28. WinAct version 1.0, ORNL, Oak Ridge (TN), USA, 2002.
    Retrieved from: https://www.ornl.gov/crpk/software;
    Retrieved on: May 18, 2018
  29. M. Andersson et al., “IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms,” EJNMMI Res. vol. 7, no. 88, Nov. 2017.
    DOI: 10.1186/s13550-017-0339-3
  30. Adult Reference Computational Phantoms, ICRP Publication 110, ICRP, Ottawa, Canada, 2009.
    DOI: 10.1016/j.icrp.2009.09.001
    PMid: 19897132
Radiation Protection


Liudmуla Aslamova, Ielyzaveta Kulich, Oleg Nasvit, Nadiia Melenevska

Pages: 159–164

DOI: 10.21175/RadJ.2018.03.027

Received: 28 JUN 2018, Received revised: 11 DEC 2018, Accepted: 16 DEC 2018, Published online: 28 FEB 2019

The term ‘Safety Culture’ was first defined in 1986. Nowadays it is introduced into all areas of activities with ionizing radiation sources. The importance of Safety Culture for medical applications mirrors rapid penetration of cutting-edge technologies in the field of medical equipment, hence the need to involve extremely competent personnel. Medical physicist and doctor bear joint responsibility for the quality of healthcare services. In Ukraine, it is increasingly recognized that national education system combined with formal certification schemes for the recognition of the expertise and competence play an important role to ensure the professionalism of individual practitioners in medical physics. National regulatory framework needs to be amended and updated to ensure an effective introduction of ‘Safety Culture’ into professional and regulation practice.
  1. Ю. М. Скалецький та ін., “Вступ” в Культура безпеки на ядерних об’єктах України: наук.-методол. посіб, Київ, Україна: ДП «НВЦ «Євроатлантикінформ», 2007. (Yu. M. Skaletskyi, et al., “Introduction” in Safety culture on nuclear objects of Ukraine: research and methodological textbook Kyiv, Ukraine: DP “NVTs “Euroanalitykinform”, 2007.)
  2. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, General Safety Requirements, No. GSR Part 3, IAEA, Vienna, Austria, 2014.
    Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1578_web-57265295.pdf
    Retrieved on: Apr. 13, 2018
  3. European Commission. (Dec. 5, 2013). Council Directive 2013/59/Euratom laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation.
    Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF;
    Retrieved on: Apr. 13, 2018
  4. IRPA Guidance on Certification of a Radiation Protection Expert, IRPA, Paris, France, 2016.
    Retrieved from: http://www.irpa.net/docs/IRPA%20Guidance%20on%20Certification%20of%20a%20RP%20Exper t%20(2016).pdf;
    Retrieved on: Apr. 13, 2018
  5. Safety culture, Safety series No.75-INSAG-4, IAEA, Vienna, Austria, 1991.
    Retrieved from: https://www-pub.iaea.org/mtcd/publications/pdf/pub882_web.pdf;
    Retrieved on: Apr. 13, 2018
  6. The IAEA Safety Glossary, IAEA, Vienna, Austria, 2008, p. 303.
    Retrieved from: http://www-ns.iaea.org/standards/safety-glossary.asp;
    Retrieved on: Apr. 10, 2018.
  7. Верховна рада України. (Лютий 08, 1995). Закон України “Про використання ядерної енергії та радіаційну безпеку”. (Supreme Council of Ukraine. (Feb. 8, 1995). Law of Ukraine “Nuclear energy use and radiation safety”.)
    Retrieved from: http://zakon.rada.gov.ua/laws/show/39/95-%D0%B2%D1%80;
    Retrieved on: Mar. 13, 2018
  8. Міністерство охорони здоров’я України. (Грудень 01, 1997). Норми радіаційної безпеки України. Державні гігієнічні нормативи. (Ministry of Health of Ukraine. (Dec. 1, 1997). Radiation safety standard of Ukraine. National hygienic regulations.)
    Retrieved from: http://zakon.rada.gov.ua/rada/show/v0062282-97;
    Retrieved on: Mar. 13, 2018
  9. Державна інспекція ядерного регулювання України. (Грудень 19, 2011). No 190, Затвердження загальних вимог до системи управління діяльністю у сфері використання ядерної енергії. (State Nuclear Regulation Inspectorate of Ukraine. (Dec. 19, 2011). No 190, Adoption of general requirements to management system of activities related to nuclear energy use.)
    Retrieved from: http://zakon2.rada.gov.ua/laws/show/z0017-12;
    Retrieved on: Mar. 20, 2018
  10. Application of the management system for facilities and activities,Safety guide No. GS-G-3.1, IAEA, Vienna, Austria, 2006.
    Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1253_web.pdf;
    Retrieved on: Mar. 21, 2018
  11. Державна інспекція ядерного регулювання України. (Жовтень 03, 2008). Вимоги до системи управління якістю проведення діагностичних та терапевтичних процедур з використанням джерел іонізуючого випромінювання. (State Nuclear Regulation Inspectorate of Ukraine. (Oct. 3, 2008). No 166 Requirements to quality management system for performing of diagnostics and treatment procedures with radiation sources use.)
    Retrieved from: http://zakon2.rada.gov.ua/laws/show/z1054-08;
    Retrieved on: Mar. 1, 2018
  12. The management system for nuclear installations,Safety Guide No.GS-G-3.5, IAEA, Vienna, Austria, 2009.
    Retrieved from: http://www-pub.iaea.org/MTCD/publications/PDF/Pub1392_web.pdf;
    Retrieved on: Mar. 1, 2018.
  13. P. G. Boysen II, “Just Culture: A Foundation for Balanced Accountability and Patient Safety,” Ochsner J., vol. 13, no. 3, pp. 400 – 406, 2013.
    PMid: 24052772
    PMCid: PMC3776518
  14. C. E. Sammer, K. Lykens, K. P. Singh, D. A. Mains, N. A. Lackan, “What is Patient Safety Culture? A Review of the Literature,” J. Nurs. Scholarsh., vol. 42, no. 2, pp. 156 – 165, Jun. 2010.
    DOI: 10.1111/j.1547-5069.2009.01330.x
    PMid: 20618600
  15. В. В. Бєгун та ін., “Визначення і харакреристика культури безпеки,” в Культура безпеки в ядерній енергетиці: Підручник, Київ, Україна, 2012. (V.V. Begun et al., “Definition and description of Safety Culture,” in Safety culture in nuclear power engineering: textbook, Kyiv, Ukraine, 2012.)
    Retrieved from: http://www.immsp.kiev.ua/postgraduate/Biblioteka_trudy/KulturaBezpekyBegun2012.pdf
    Retrieved on: Feb. 5, 2018
  16. Ю. М. Скалецький, Д. С. Бірюков, О. О. Мартюшева, Л. Д. Яценко, Проблеми впровадження культури безпеки в Україні: аналіт. доп., НІСД, Київ, Україна, 2012. (Yu. M. Skaletskyi, D. S. Birjukov, O. O. Martjusheva, L. D. Yatsenko, Problems of implementation of safety culture in Ukraine: Analytical report, NISD, Kyiv, Ukraine, 2012)
    Retrieved from: http://www.niss.gov.ua
    Retrieved on: Feb. 5, 2018
  17. Всеукраїнське об`єднання медичних фізиків та інженерів, Київ, Україна, 2018. (Ukrainian Association of Medical Physicists and Engineers, Kyiv, Ukraine, 2018.)
    Retrieved from: http://vomfi.univ.kiev.ua/
    Retrieved on: May 5, 2018
  18. Навчально-науковий центр радіаційної безпеки, Київ, Україна, 2018. (Training and Scientific Center of Radiation Safety, Kyiv, Ukraine, 2018.)
    Retrieved from: http://rb.univ.kiev.ua/
    Retrieved on: May 5, 2018
  19. Radiation Protection of Patients, IAEA, Vienna, Austria, 2018.
    Retrieved from: https://www.iaea.org/resources/rpop
    Retrieved on: May 5, 2018
Radiation Detectors


Viktors Ivanovs, S. Gushchin, Valerijs Ivanovs, V. Fjodorovs, D. Kuznecovs, A. Loutchanski, V. Ogorodniks

Pages: 165–171

DOI: 10.21175/RadJ.2018.03.028

Received: 15 JUN 2018, Received revised: 4 DEC 2018, Accepted: 8 DEC 2018, Published online: 28 FEB 2019

Silicon photomultipliers (SiPMs) coupled with various scintillators are currently used as gamma-radiation detectors for different applications. Many tasks require the ability to use detectors in environments with varying operating temperatures. However, the profound dependences of the characteristics of both SiPMs and scintillators on temperature make it difficult to use these detectors in such environmental conditions. The gain of an SiPM increases with increases in bias voltage, and it decreases with increases in temperature; however, the scintillator’s light yield may increase and/or decrease with temperature, depending on the type of scintillator used. Such temperature dependence makes it necessary to use special techniques for the stabilization of the detector parameters. We proposed and tested a method and an electronic module for compensating for the temperature instabilities of the gain of an SiPM and the light output of BGO and CsI(Tl) scintillators. Our method is based on the application of the SiPM biasing power supply that is controlled and managed by the microprocessor. The calibration data of the temperature dependence of a photo peak (662 keV) are stored in the microprocessor memory. The exact value of the bias voltage for each temperature is calculated by the formula of the 5th-degree polynomial. This method achieved a high accuracy of the photo peak position stabilization in the tested operation temperature range (-20⁰C - +50⁰C). The test results of the SiPM-based gamma-radiation BGO and CsI(Tl) scintillation detectors as well as the results of their practical applications in medical surgical probes are presented.
  1. B. Sanaei, M. T. Baei, Z. Sayyed-Alangi, “Characterization of a New Silicon Photomultiplier in Comparison with a Conventional Photomultiplier Tube,” J. Modern Phys., no. 6, pp. 425 – 433, Mar. 2015.
    Retrieved from: https://file.scirp.org/pdf/JMP_ 2015032514312660.pdf;
    Retrieved on: Nov. 23, 2018
  2. M. A. Wonders, D. L. Chichester, M. Flaska, “Characterization of New-Generation Silicon Photomultipliers for Nuclear Security Applications,” in EPJ Web Conf., Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA 2017), Liège, Belgium, Jun. 2017.
    Retrieved from: https://www.epj-conferences.org/articles/epjconf/pdf/2018/05/epjconf_animma2018_07015.pdf;
    Retrieved on: Nov. 23, 2018
  3. Download Center, EPIC Crystals Co., Ltd., Kunshan, China, 2018.
    Retrieved from: http://www.epic-crystal.com/download-center/;
    Retrieved on: Nov. 23, 2018
  4. Product Overview, C-SERIES SIPM: Silicon Photomultiplier Sensors, SensL, Cork, Ireland, 2018.
    Retrieved from: https://www.onsemi.com/ PowerSolutions/product.do?id=C-SERIES%20SIPM&pdf=Y;
    Retrieved on: Nov. 23, 2018
  5. BGO Bismuth Germanate Scintillation Material, Data Sheet, Saint-Gobain Crystals, La Défense, France, 2018.
    Retrieved from: https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/bgo-material-data-sheet.pdf;
    Retrieved on: Nov. 23, 2018
  6. P. L. Wang, Y. L. Zhang, Z. Z. Xu, X. L. Wang, “Study on the temperature dependence of BGO light yield,” Sci. China Phys. Mech., vol. 57, no. 10, pp. 1898 – 1901, Jun. 2014.
    DOI: 10.1007/s11433-014-5548-4
  7. C. L. Melcher, J. S. Schweitzer, A. Liberman, J. Simonetti, “Temperature dependence of fluorescent decay time and emission spectrum of bismuth germinate, IEEE Trans. Nucl. Sci., vol. NS-32, no. 1, pp. 529 – 532, Feb. 1985.
    DOI: 10.1109/TNS.1985.4336887
  8. R. Mao, L. Zhang, R.-Y. Zhu, “Optical and Scintillation properties of inorganic scintillators in high energy physics,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2425 – 2431, Aug. 2008.
    DOI: 10.1109/TNS.2008.2000776
  9. J. D. Valentine, W. W. Moses, S. E. Derenzo, D. K. Wehe, G. F. Knoll, “Temperature dependence of CsI(Tl) gamma-ray excited scintillation characteristics,” Nucl. Instr. Meth. Phys. Res., vol. 325, pp. 147 – 157, Feb. 1993.
    DOI: 10.1016/0168-9002(93)91015-F
  10. CsI(Tl), CsI(Na) Cesium Iodide scintillation material, Data Sheet, Saint-Gobain Crystals, La Défense, France, 2018.
    Retrieved from: https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/csitl-and-na-material-data-sheet.pdf;
    Retrieved on: Nov. 23, 2018
  11. Introduction to SiPM, Technical note, Rev. 6.0, SensL, Cork, Ireland, 2017.
    Retrieved from: https://www.sensl.com/downloads/ds/TN%20-%20Intro%20to%20SPM%20Tech.pdf;
    Retrieved on: Nov. 23, 2018
  12. S. Piatek, How does temperature affect the gain of an SiPM? Hamamatsu Corporation & New Jersey Institute of Technology, New Jersey (NJ), USA, 2016.
    Retrieved from: https://hub.hamamatsu.com/sp/hc/resources/Temperature_Gain_SiPM.pdf?utm_source=hc&utm_med ium=email&utm_campaign=hc-enews;
    Retrieved on: Nov. 23, 2018
  13. P. Eckert, H.-C. Schultz-Coulon, W. Shen, R. Stamen, A. Tadday, “Characterisation studies of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res., vol. 620, no. 2-3, pp. 217 – 226, Aug. 2010.
    DOI: 10.1016/j.nima.2010.03.169
  14. M. Ramilli, “Characterization of SiPM: temperature dependencies,” in Proc. 2008 IEEE Nuclear Science Symposium (NSS/MIC), Dresden, Germany, 2008.
    DOI: 10.1109/NSSMIC.2008.4774854
  15. Datasheet: Silicon Photomultipliers (SiPM), Low-Noise, Blue-Sensitive, SensL, Cork, Ireland, 2018.
    Retrieved from: https://www.onsemi.com/pub/Collateral/MICROC-SERIES-D.PDF;
    Retrieved on: Nov. 23, 2018
  16. A. Manor at al., “Compensation of scintillation sensor gain variation during temperature transient conditions using signal processing techniques,” in Proc. 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando (FL), USA, 2009, pp. 2399 – 2403.
    DOI: 10.1109/NSSMIC.2009.5402169
  17. G. Pausch, J. Stein, N. Teofilov, “Stabilizing scintillation detector system by exploiting the temperature dependence of the light pulse decay time,” IEEE Trans. Nucl. Sci., vol. 52, no. 5, pp. 1849 – 1855, Oct. 2005.
    DOI: 10.1109/TNS.2005.856616
  18. R. W. Carlson, “Standardized luminophore,” U.S. patent US3030509, USA, Apr. 17, 1962.
    Retrieved from: https://patentimages.storage.googleapis.com/11/8b/98/65ada86acbf647/US3030509.pdf;
    Retrieved on: Nov. 23, 2018
  19. K. Saucke, G. Pausch, J. Stein, H.-G. Ortlepp, P. Schotanus, “Stabilizing scintillation detector systems with pulsed LEDs: a method to derive the LED temperature from pulse height spectra,” IEEE Trans. Nucl. Sci., vol. 52, no. 6, pp. 3160 – 3165, Dec. 2005.
    DOI: 10.1109/TNS.2005.862929
  20. M. Yamashita, S. Takeuchi, “Temperature-compensating pulsed reference light source using a LED,” Rev. Sci. Instrum., vol. 54, no. 12, pp. 1795 – 1796, Aug. 1983.
    DOI: 10.1063/1.1137342
  21. A. V. Stolin, S. Majewski, R. R. Raylman, “Novel Method of Temperature Stabilization for SiPM-Based Detectors,” IEEE Trans. Nucl. Sci., vol. 60, no. 5, pp. 3181 – 3187, Oct. 2013.
    DOI: 10.1109/TNS.2013.2273398
  22. Z. Li et al., “A gain control and stabilization technique for silicon photomultipliers in low-light-level applications around room temperature”, Nucl. Instr. Meth. Phys. Res. A, vol. 695, spec. issue, pp. 222 – 225, Dec. 2012.
    DOI: 10.1016/j.nima.2011.12.037
  23. F. Licciulli, C. Marzocca, “An Active Compensation System for the Temperature Dependence of SiPM Gain,” IEEE Trans. Nucl. Sci., vol. 62, no. 1, pp. 228 – 235, Feb. 2015.
    DOI: 10.1109/TNS.2015.2388580
  24. P. S. Marrocchesi et al., “Active control of the gain of a 3 mm x 3 mm silicon photomultiplier,” Nucl. Instr. Meth. Phys. Res. Sec. A, vol. 602, no. 2, pp. 391 – 395, 2009.
    DOI: 10.1016/j.nima.2008.12.199
  25. G. Eigen et al., “SiPM gain stabilization studies for adaptive power supply,” presented at the International Workshop on Future Linear Colliders (LCWS15), Whistler, Canada, 2015.
    Retrieved from: https://arxiv.org/pdf/1603.00016.pdf;
    Retrieved on: Nov. 23, 2018
  26. A. Kaplan, “Correction of SiPM temperature dependencies,” Nucl. Instr. Meth. Phys. Res. A, vol. 610, no. 1, pp. 114 – 117, Oct. 2009.
    DOI: 10.1016/j.nima.2009.05.137
  27. S. Nieswand, “A Peltier cooling system for SiPM temperature stabilization,” B.Sc. dissertation, CERN, Geneva, Switzerland, Oct. 2012.
    Retrieved from: https://web.physik.rwth-aachen.de/~hebbeker/theses/nieswand_bachelor.pdf;
    Retrieved on: Nov. 23, 2018
  28. G. Collazuol, M. G. Bisognia, S. Marcatilia, C. Piemonte, A. Del Guerraa, “Studies of silicon photomultipliers at cryogenic temperatures,” Nucl. Instr. Meth. Phys. Res. Sec. A, vol. 628, no. 1, pp. 389 – 392, Feb. 2011.
    DOI: 10.1016/j.nima.2010.07.008
Radiation Detectors


Georgi Gorine, Giuseppe Pezzullo, Michael Moll, Mar Capeans, Katja Väyrynen, Mikko Ritala, Didier Bouvet, Federico Ravotti, Jean-Michel Sallese

Pages: 172–177

DOI: 10.21175/RadJ.2018.03.029

Received: 15 JUN 2018, Received revised: 30 NOV 2018, Accepted: 1 DEC 2018, Published online: 28 FEB 2019

The Future Circular Collider (FCC) design study aims to assess the physics potential and technical feasibility of a new synchrotron accelerator expected to reach an energy level of 100 TeV colliding proton beams circulating in a 100 km tunnel located in the Geneva area in Switzerland. Inside the FCC detectors, over the 10 years of scheduled operation, unprecedented radiation levels will presumably exceed several tens of MGy with more than 1017 particles/cm2. Current dosimetry technologies, such as silicon pin diodes, are not capable of integrating this particle fluence, thus requiring a new type of sensor to be used as dosimeter in future irradiation facilities and, at a later stage, in the FCC accelerator. As a solution for the Ultra High Fluence monitoring, we have focused our research on metal nanolayers. The technology consists of thin film resistive structures deposited on silicon wafers, where sensitivity to displacement damage, measurable in a variation of their electrical properties, can be trimmed by variating geometrical (thickness, W, L) and physical (material) properties of the nanolayers. The first prototypes of these new dosimeters have been fabricated at EPFL Centre of Micronanotechnology, and specific high-fluence irradiation tests (with gamma, protons, neutrons) have been carried out in several facilities inside and outside CERN. In this paper, after presenting the process flow for the fabrication of these dosimeters, we show the results of annealing tests performed on devices previously irradiated with 23 GeV protons. These measurements suggest the occurrence of an oxidation process that was enhanced by the radiation damage.
  1. F. Zimmermann, “High-energy physics strategies and future large-scale projects,” Nucl. Instr. Methods Phys. Res. B, vol. 355, pp. 4 – 10, Jul. 2015.
    DOI: 10.1016/j.nimb.2015.03.090
  2. M. I. Besana, F. Cerutti, A. Ferrari, W. Riegler, V. Vlachoudis, “Evaluation of the radiation field in the future circular collider detector,” Phys. Rev. Accel. Beams, vol. 19, no. 11, 111004, 2016.
    DOI: 10.1103/PhysRevAccelBeams.19.111004
  3. A. Infantino, R. Alía, M. Besana, M. Brugger, F. Cerutti, “Preliminary design of CERN Future Circular Collider tunnel: first evaluation of the radiation environment in critical areas for electronics,” in 13th International Conference on Radiation Shielding (ICRS-13), Paris, France, 2016.
    DOI: 10.1051/epjconf/201715303004
  4. G. Spiezia et al., “The LHC radiation monitoring system - RadMon,”in Proc. 10th Int. Conf. Large Scale Applications and Radiation Hardness of Semiconductor Detectors (RD11), Florence, Italy, 2011.
    Retrieved from: https://pos.sissa.it/143/024/pdf;
    Retrieved on: Mar. 20, 2018
  5. F. Ravotti et al., “Conception of an integrated sensor for the radiation monitoring of the CMS experiment at the large hadron collider,” IEEE Trans. Nucl. Sci., vol. 51, no. 6, pp. 3642 – 3648, Dec. 2004.
    DOI: 10.1109/TNS.2004.839265
  6. F. Ravotti, “Development and Characterisation of Radiation Monitoring Sensors for the High Energy Physics Experiments of the CERN LHC Accelerator,” Ph.D. dissertation, Universite Monpellier II, 2006.
    Retrieved from: http://cds.cern.ch/record/1014776;
    Retrieved on: Mar. 20, 2018
  7. B. Camanzi, A. Holmes-Siedle, “The race for new radiation monitors,” Nat. Mater., vol. 7, pp. 343 – 345, May 2008.
    DOI: 10.1038/nmat2159
    PMid: 18432200
  8. H. Shulman, W. S. Ginell, NASA Space Vehicle Design Criteria- (Structures): Nuclear and space radiation effects on materials, NASA, Washington (DC), USA, 1970.
    Retrieved from: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710015558.pdf;
    Retrieved on: Mar. 20, 2018
  9. J. W. Martin, “The electrical resistivity of some lattice defects in FCC metals observed in radiation damage experiments,” J. Phys. F: Met. Phys., vol. 2, no. 5, Sep. 1972.
    DOI: 10.1088/0305-4608/2/5/008
  10. S. J. Zinkle, “Electrical resistivity of small dislocation loops in irradiated copper,” J. Phys. F: Met. Phys., vol. 18, no. 3, 377, Mar. 1988.
    DOI: 10.1088/0305-4608/18/3/009
  11. R. L. Chaplin, R. R. Coltman, “Defects and transmutations in reactor-irradiated copper,” J. Nucl. Mater. vol. 108-109, pp. 175 – 182, Jul-Aug. 1982.
    DOI: 10.1016/0022-3115(82)90485-8
  12. F. Fienga et al., “Lab-on-Fiber as dosimeter for the ultra high dose scenario,” in Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference (2018 IEEE NSS/MIC), Sydney, Australia, 2018.
  13. Center of MicroNanoTechnology official webpage, École polytechnique fédérale de Lausanne, Lausanne, Switzerland, 2018.
    Retrieved from: https://cmi.epfl.ch;
    Retrieved on: Apr. 13, 2018
  14. G. Žerovnik, “Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers,” Appl. Radiat. Isot., vol. 96, pp. 27 – 35, Feb. 2015.
    DOI: 10.1016/j.apradiso.2014.10.026
    PMid: 25479432
  15. B. Gkotse et al., “A new high-intensity proton irradiation facility at the CERN PS east area,” in Proc. Int. Conf. Technology and Instrumentation in Particle Physics 2014 (AIDA-CONF-2014-019), Amsterdam, Netherlands, 2014.
    Retrieved from: https://cds.cern.ch/record/1977865;
    Retrieved on: Mar. 20, 2018
  16. P. Indelicato et al., “The Gbar project, or how does antimatter fall?,” Hyperfine Interact., vol. 228, no. 1-3, pp. 141 – 150, Oct. 2014.
    DOI: 10.1007/s10751-014-1019-6
  17. H. S. Matis et al., “The BRAN luminosity detectors for the LHC,” Nucl. Instrum. Methods Phys. Res. A., vol. 848, pp. 114 – 126, Mar. 2017.
    DOI: 10.1016/j.nima.2016.12.019
  18. G. Gorine et al., “Ultra High Fluence Radiation Monitoring Technology for the Future Circular Collider at CERN,” IEEE Trans. Nucl. Sci., 2018.
    DOI: 10.1109/TNS.2018.2797540
  19. F. Warkusz, “The size effect and the temperature coefficient of resistance in thin films,” J. Phys. D, vol. 11, no. 5, pp. 689 – 694, Apr. 1978.
    DOI: 10.1088/0022-3727/11/5/012
  20. N. Cabrera, N. F. Mott, “Theory of the oxidation of metals,” Rep Prog Phys., vol. 12, pp. 163 – 184, 1949.
    DOI: 10.1088/0034-4885/12/1/308
  21. M. O’Reilly et al., “Investigation of the oxidation behaviour of thin film and bulk copper,” Appl. Surf. Sci., vol. 91, no. 1-4, pp. 152 – 156, Oct. 1995.
    DOI: 10.1016/0169-4332(95)00111-5
  22. S. K. Lee, H. C. Hsu, W. H. Tuan, “Oxidation Behavior of Copper at a Temperature below 300°C and the Methodology for Passivation,” Mater. Res., vol. 19, no. 1, pp. 51 – 56, Feb. 2016.
    DOI: 10.1590/1980-5373-MR-2015-0139
  23. K. Väyrynen et al., “Low-Temperature Atomic Layer Deposition of Low-Resistivity Copper Thin Films Using Cu(dmap)2 and Tertiary Butyl Hydrazine,” Chem. Mater., vol. 29, no. 15, pp. 6502 – 6510, Jul. 2017.
    DOI: 10.1021/acs.chemmater.7b02098
Radiation Effects


F. Di Capua, M. Campajola, D. Fiore, C. Nappi, E. Sarnelli, V. Izzo

Pages: 178–184

DOI: 10.21175/RadJ.2018.03.030

Received: 3 JUL 2018, Received revised: 12 DEC 2018, Accepted: 31 DEC 2018, Published online: 28 FEB 2019

In this paper, we investigated the discrete switching of the Dark Count Rate between two or more levels in Single-Photon Avalanche Diode devices. This phenomenon, known as Random Telegraph Signal, is related to the density and distribution of defects in the semiconductor lattice and oxides. In this paper, we focused on a test chip containing SPADs with different architectures designed and implemented in 150-nm CMOS technology. The occurrence probability of the Random Telegraph Signal for proton-irradiated devices has been measured as a function of temperature for different SPAD layouts.
  1. S. Cova, A. Longoni, and A. Andreoni, “Towards Picosecond Resolution with Single-Photon Avalanche Diodes,” Rev. Sci. Instr.,vol. 52, no. 3, pp. 408 – 412, Mar. 1981.
    DOI: 10.1063/1.1136594
  2. M. M. Ter-Pogossian, N. A. Mullani, D. C. Ficke, J. Markham, D. L. Snyder, “Photon time-of-flight-assisted positron emission tomography,” J. Comput. Assist. Tomogr., vol.5, no. 2, pp. 227 – 239, Apr. 1981.
    DOI: 10.1097/00004728-198104000-00014
    PMid: 6971303
  3. E. Schaefer, “Search for gamma ray burst counterparts,” in Proc. AIP Conf. Gamma-ray burstr: Second Workshop (AIP 307), Huntsville (AL), USA, 1993.
    DOI: 10.1063/1.45900
  4. D. Bronzi et al., “100 000 frames/s 64 °ø 32 single-photon detector array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, 3804310, Nov-Dec. 2014.
    DOI: 10.1109/JSTQE.2014.2341562
  5. S. Cova et al., “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt., vol. 35, no. 12, pp. 1956 – 1976, Apr. 1996.
    DOI: 10.1364/AO.35.001956
  6. A. Rochas et al., “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 387 – 394, Mar. 2002.
    DOI: 10.1109/16.987107
  7. J. A. Richardson, E. A. G. Webster, L. A. Grant, R. K. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,” IEEE Trans. Electron Devices,vol. 58, no. 7, pp. 2028 – 2035, Jul. 2011.
    DOI: 10.1109/TED.2011.2141138
  8. L. Carrara, C. Niclass, N. Scheidegger, H. Shea, E. Charbon, “A Gamma. X-Ray and High-Energy Proton Radiation-Tolerant CIS for Space Applications,”in Proc. Solid-State Circuits Conference (ISSCC 2009), San Francisco (CA), USA, 2009.
    DOI: 10.1109/ISSCC.2009.4977297
  9. L. Carrara, M. Fishburn, C. Niclass, N. Scheidegger, H. Shea, E. Charbon, “A Variable Dynamic Range Single-Photon Imager Designed for Multi-Radiation Tolerance,” in Proc. EOS Frontiers in Electronic Imaging – Single-photon Imaging, Munich, Germany, Jun. 2009.
    Retrieved from: https://www.researchgate.net/publication/41939451_A_Variable_Dynamic_Range_Single-Photon_Image r_Designed_for_Multi-Radiation_Tolerance;
    Retrieved on: Apr. 3, 2018
  10. I. H. Hopkins, G. R. Hopkinson, “Random telegraph signals from proton-irradiated CCDs,” IEEE Trans. Nucl. Sci. vol. 40, no. 6, pp. 1567 – 1574, Dec. 1993.
    DOI: 10.1109/23.273552
  11. I. H. Hopkins, G. R. Hopkinson, “Further measurements of random telegraph signals in proton-irradiated CCDs,” IEEE Trans. Nucl. Sci.,vol. 42, no. 6, pp. 2074 – 2081, Dec. 1995.
    DOI: 10.1109/23.489255
  12. G. R. Hopkinson, V. Goiffon, A. Mohammadzadeh, “Random telegraph signals in proton irradiated CCDs and APS,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2197 – 2204, Aug. 2008.
    DOI: 10.1109/TNS.2008.2000764
  13. J. Bogaerts, B. Dierickx, R. Mertens, “Random telegraph signals in a radiation-hardened CMOS active pixel sensor,” IEEE Trans. Nucl. Sci., vol. 49, no. 1, pp. 249–257, Feb. 2002.
    DOI: 10.1109/TNS.2002.998649
  14. C. Virmontois et al., “Dark Current Random Telegraph Signals in Solid-State Image Sensors,” IEEE Trans. Nucl. Sci., vol. 60, no. 6, pp. 4323 – 4331, Dec. 2013. DOI: 10.1109/TNS.2013.2290236
  15. M. A. Karami, L. Carrara, C. Niclass, M. Fishburn, E. Charbon, “RTS Noise Characterization in Single-Photon Avalanche Diodes,” IEEE Electon Dev. Lett.,vol. 31, no. 7, pp. 692 – 694, Jul. 2010.
    DOI: 10.1109/LED.2010.2047234
  16. F. Di Capua et al., “Random Telegraph Signal in Proton Irradiated Single-PhotonAvalanche Diodes,” IEEE Trans. Nucl. Sci., vol. 65, n0. 8, pp. 1654 – 1660, Aug. 2018.
    DOI: 10.1109/TNS.2018.2814823
  17. L. Pancheri, D. Stoppa, “Low-noise Single-Photon Avalanche Diode in 0.15 µm CMOS Technology,” in Proc. European Conf., Solid-State Device Research (ESSDERC), Helsinki, Finland,2011, pp. 179 – 182.
    DOI: 10.1109/ESSDERC.2011.6044205
  18. H. Xu, L. Pancheri, L. H. C. Braga, G. Dalla Betta, D. Stoppa, “Cross-talk characterization of dense single-photon avalanche diode arrays in CMOS 150-nm technology,” Opt. Eng., vol.55, no. 6, 067102, 2016.
    DOI: 10.1117/1.OE.55.6.067102
  19. Ashland Gafchromic radiotherapy films, Ashland Advanced Materials, Bridgewater (NJ), USA, 2017.
    Retrieved from: http://www.gafchromic.com/gafchromic-film/radiotherapy-films/EBT/index.asp;
    Retrieved on: Jun. 14, 2018
  20. M. Campajola, “Noise characterization of Single-Photon Avalanche Diodes,” M.Sc. dissertation, University “Federico II”, Dept. of Physics, Naples, Italy, 2017.
  21. M. J. Kirton, M. J. Uren, “Noise in solid-state microstructures: a new perspective on individual defects, interface states, and low-frequency (1/f) noise,” Adv. Phys., vol. 38, no. 4, pp. 367 – 468, 1989.
    DOI: 10.1080/00018738900101122
  22. G. D. Watkins, J. W. Corbett, “Defects in irradiatedsilicon: electron paramagnetic resonance and electron-nuclear double resonance of the Si-E center,” Phys. Rev., vol.134, no. 5A, pp. 1359 – 1377, Jun. 1964.
    DOI: 10.1103/PhysRev.134.A1359
Radiation Effects


Natalia Koltovaya, Ksenia Lyubimova, Nadya Zhuchkina

Pages: 185–189

DOI: 10.21175/RadJ.2018.03.031

Received: 23 NOV 2018, Received revised: 2 FEB 2019, Accepted: 10 FEB 2019, Published online: 28 FEB 2019

We have investigated the biological effects induced by different accelerated ions (4He, 11B, 12C, 15N, and 20Ne) with different energies and linear energy transfers (LETs) and determined their relative biological effectiveness (RBE) for lethal damage and gene mutations. In particular, base pair substitution induction by ionizing radiation in haploid and diploid yeast Saccharomyces cerevisiae has been studied. We have detected the GC-AT transition in the haploid strain and the AT-TA transversion in the diploid strain. The RBE dependence on LET for lethal mutations is described by a curve with a local maximum at LET of about 100 keV/μm. It is shown that the mutation frequency increases with increasing the dose up to 1000 Gy for diploid cells irradiated by different ions. A decrease in RBE with increasing LET has been observed for diploid cells. However, for haploid cells irradiated at doses of up to 100 Gy, the curves seem to have a plateau. The RBE dependence on LET for haploid cells is different and also has a plateau. But for substitution induction in haploid cells, an ion beam with a high LET (177 keV/μm) is less mutagenic than the one with a low LET (44–127 keV/μm). Therefore, we have obtained different biological effects of accelerated ions for haploid and diploid cells.
  1. D. Matthia et al., “The Martian surface radiation environment – a comparison of models and MSL/RAD measurements,” J. Space Weather Space Clim., vol. 6, no. A13, Mar. 2016.
    DOI: 10.1051/swsc/2016008
  2. S. Nakai, R. Mortimer, “Induction of different classes of genetic effects in yeast using heavy ions,” Rad. Res. Suppl., vol. 7, pp. 172 – 181, 1967.
    PMid: 6058652
  3. A. B. Devin et al., “The start gene CDC28 and the genetic stability of yeast,” Yeast, vol. 6, no. 3, pp. 231 – 243, May-Jun. 1990.
    DOI: 10.1002/yea.320060308
    PMid: 2190433
  4. T.-M. Williams, R. M. Fabbri, J. W. Reeves, G. F. Crouse, “A new reversion assay for measuring all possible base pair substitutions in S. cerevisiae,” Genetics, vol. 170, no. 3, pp. 1423 – 1426, Jul. 2005.
    DOI: 10.1534/genetics.105.042697
    PMid: 15911571
    PMCid: PMC1451166
  5. M. Hampsey, “A tester system for detecting each of the six base-pair substitutions in Saccharomyces cerevisiae by selecting for an essential cysteine in iso-1-cytochrome c,” Genetics, vol. 128, no. 1, pp. 59 – 67, May 1991.
    PMid: 1648005
    PMCid: PMC1204453
  6. N. A. Koltovaya, N. Zhuchkina, K. Lyubimova, “All types of base pair substitutions induced by γ-rays in haploid and diploid yeast cells,” J. Bioeng. Life Sci., vol. 12, no. 9, 2018.
    Retrieved from: https://waset.org/publications/10009460/all-types-of-base-pair-substitutions-induced-by-γ-rays-in-haploid-and-diploid-yeast-cells;
    Retrieved on: Aug. 12, 2018
  7. K. A. Lyubimova, S. A. Anikin, N. A. Koltovaya, E. A. Krasavin, “Regularities of the induction of point mutations in the yeast Saccharomyces cerevisiae after exposure to γ-radiation,” Rus. J. Genetics, vol. 34, no. 9, pp. 1228 – 1232, Sep. 1998.
    PMid: 9879010
  8. Y. Matuo, Y. Izumi, Y. Furusawa, K. Shimizu, “Biological effects of carbon ion beams with various LETs on budding yeast Saccharomyces cerevisiae,” Mutat. Res., vol. 810, pp. 45 – 51,Jul. 2018.
    DOI: 10.1016/j.mrfmmm.2017.10.003
    PMid: 29146154
  9. N. A. Koltovaya et al., “Radiation sensitivity of the yeast Saccharomyces and SRM genes: effects of srm1 and srm5 mutations,” Rus. J. Genetics, vol. 34, no. 5, pp. 610 – 624, May 1998.
    PMid: 9719910
  10. J. N. Strathern, B. K. Shafer, C. B. McGill, “DNA synthesis errors associated with double-strand-break repair,” Genetics, vol. 140, no. 3, pp. 965 – 972, Jul. 1995.
    PMid: 7672595
    PMCid: PMC1206680
  11. W. M. Hick, M. Kim, J. E. Haber, “Increased mutagenesis and unique mutation signature associated with mitotic gene conversion,” Science, vol. 329, no. 5987, pp. 82 – 85, Jul. 2010.
    DOI: 10.1126/science.1191125
    PMid: 20595613
    PMCid: PMC4254764
  12. L. H. Burch et al., “Damage-induced localized hypermutability,” Cell Cycle, vol. 10, no. 7, pp. 1073 – 1085, Apr. 2011.
    DOI: 10.4161/cc.10.7.15319
    PMid: 21406975
    PMCid: PMC3100884


A. Alexandrov et al.

Pages: 190–196

DOI: 10.21175/RadJ.2018.03.032

Received: 15 JUN 2018, Received revised: 5 DEC 2018, Accepted: 8 DEC 2018, Published online: 28 FEB 2019

Charged Particle Therapy (CPT) is a powerful radiotherapy technique for the treatment of deep-seated tumours characterized by a large dose released in the Bragg peak area (corresponding to the tumour region) and a small dose delivered to the surrounding healthy tissues. The precise measurement of the fragments produced in the nuclear interactions of charged particle beams with patient tissues is a crucial task to improve the clinical treatment plans. The FOOT (FragmentatiOn Of Target) experiment is an international project, funded by the Istituto Nazionale di Fisica Nucleare (INFN), aimed to study the dose released by the tissues and particle beams fragmentation. The target (16O, 12C) fragmentation induced by 150-400 MeV/n proton beams will be studied via the inverse kinematic approach, where 16O and 12C therapeutic beams collide on graphite and hydrocarbon target to provide the cross section on Hydrogen. A table-top detector is being developed and it includes a drift chamber as a beam monitor upstream of the target to measure the beam direction, a magnetic spectrometer based on silicon pixel and strip detectors, a scintillating crystal calorimeter able to stop the heavier produced fragments, and a ∆E detector, with TOF capability, for the particle identification. A setup based on the concept of the “Emulsion Cloud Chamber”, coupled with the interaction region of the electronic FOOT setup, will complement the physics program by measuring lighter charged fragments to extend the angular acceptance up to about 70 degrees. In this work, the experimental design and the requirements of the FOOT experiment will be discussed and preliminary results on the emulsion spectrometer tests will be presented.
  1. M. Durante, J. S. Loeffler, “Charged Particles in Radiation Oncology,” Nature Rev. Clin. Oncol., vol. 7, pp. 37 – 43, Jan. 2010.
    DOI: 10.1038/nrclinonc.2009.183
    PMid: 19949433
  2. F. Tommasino, M. Durante, “Proton Radiobiology,” Cancers, vol. 7, pp. 353 – 381, Mar. 2015.
    DOI: 10.3390/cancers7010353
    PMid: 25686476
  3. J. Dudouet et al., “Double Differential Fragmentation Cross-Section Measurements of 95 MeV/n 12C Beams on Thin Targets for Hadron Therapy,” Phys. Rev. C, vol. 88, no. 2, 024606, Aug. 2013.
    DOI: 10.1103/PhysRevC.88.024606
  4. M. Toppi et al., “Measurements of Fragmentation Cross Section of 12C ions on a thin Gold target with the FIRST Apparatus,” Phys. Rev. C, vol. 93, 064601, Jun. 2016.
    DOI: 10.1103/PhysRevC.93.064601
  5. A. Ferrari, P. Sala, A. Fassò, J. Ranft, FLUKA: A Multi-Particle Transport Code, Rep. CERN-2005-10, INFN/TC_05/11, SLAC-R-773, CERN, INFN, SLAC, Geneva, Switzerland, 2005.
    Retrieved from: https://www.slac.stanford.edu/pubs/slacreports/reports16/slac-r-773.pdf;
    Retieved on: Jun. 2, 2018
  6. T. T. Boehlen et al., “The FLUKA code: developments and challenges for high energy and medicalapplications,” Nucl. Data Sheets, vol. 120, pp. 211 – 214, Jun. 2014.
    DOI: 10.1016/j.nds.2014.07.049
  7. K. Halbach, “Design of permanent multipole magnets with oriented rare earth cobalt material,” Nucl. Instrum. Methods, vol. 169, pp. 1 – 10, Feb. 1980.
    DOI: 10.1016/0029-554X(80)90094-4
  8. W. Sang Cho et al., “OPTIMASS: A Package for the Minimization of Kinematic Mass Functions with Constraints,” deposited at arXiv Jan. 12, 2016.
    arXiv: 1508.00589v2
  9. G. De Lellis et al., “Emulsion Cloud Chamber technique to measure the fragmentation of a high-energy carbon beam,” JINST, vol. 2, P06004, Jun. 2007.
    DOI: 10.1088/1748-0221/2/06/P06004
  10. G. De Lellis et al., “Measurement of the fragmentation of Carbon nuclei used in hadron-therapy,” Nucl. Phys. A, vol. 853, no. 1, pp. 124 – 134, Mar. 2011.
    DOI: 10.1016/j.nuclphysa.2011.01.019
  11. A. Alexandrov et al., “Measurement of large angle fragments induced by 400 MeV n−1 carbon ion beams,” Meas. Sci. Technol., vol. 26, no. 9, 094001, Sep. 2015.
    DOI: 10.1088/0957-0233/26/9/094001
  12. A. Alexandrov et al., “Measurement of 12C ions beam fragmentation at large angle with an emulsion cloud chamber,” JINST, vol. 12, P08013, Aug. 2017.
    DOI: 10.1088/1748-0221/12/08/P08013
  13. L. Arrabito et al., “Track reconstruction in the emulsion-lead target of the OPERA experiment using the ESS microscope,” JINST, vol. 2, P05004, May 2007.
    DOI: 10.1088/1748-0221/2/05/P05004
  14. G. De Lellis et al., “Momentum measurement by the angular method in the Emulsion Cloud Chamber,” Nucl. Instrum. Methods Phys. Res. A, vol. 512, no. 3, pp. 539 – 545, Oct. 2003.
    DOI: 10.1016/S0168-9002(03)02016-3
  15. N. Agafonova et al., “Momentum measurement by the Multiple Coulomb Scattering method in the OPERA lead emulsion target,” New J. Phys., vol. 14, 013026, Jan. 2012.
    DOI: 10.1088/1367-2630/14/1/013026
  16. M. Tanabashi et al. “Reviev of Particle Physics,” Phys. Rev. D, vol. 98, 030001, Aug. 2018
    DOI: 10.1103/PhysRevD.98.030001
  17. A. Alexandrov et al., “A new fast scanning system for the measurement of large angle tracks in nuclear emulsions,” JINST, vol. 10, P11006, Nov. 2015.
    DOI: 10.1088/1748-0221/10/11/P11006
  18. A. Alexandrov et al., “A new generation scanning system for the high-speed analysis of nuclear emulsions,” JINST, vol. 11, P06002, Jun. 2016.
    DOI: 10.1088/1748-0221/11/06/P06002
  19. A. Alexandrov et al., “The continuous motion technique for the new generation scanning system,” Sci. Rep., vol. 7, 7310, Aug. 2017.
    DOI: 10.1038/s41598-017-07869-3
Microwave, Laser, RF
and UV radiations


I. Topalova, Ts. Shalamanova, V. Zaryabova, M. Israel

Pages: 197–201

DOI: 10.21175/RadJ.2018.03.033

Received: 14 JUN 2018, Received revised: 17 NOV 2018, Accepted: 1 DEC 2018, Published online: 28 FEB 2019

There is a significant increase in the use of mobile communications services and it is expected that this growth will continue with the introduction of new generations of technology standards such as Long Term Evolution (LTE), for example. The exposure from environmental sources in urban areas is formed mainly by broadcasting antennas, and base stations for mobile communications. The large number of telecommunication sources placed in the urban areas provoked serious concerns about possible health effects, considering the exposure to electromagnetic fields (EMF). Particular attention has been paid to the so-called “critical” or “sensitive” areas around hospitals, schools, kindergartens, etc. Hence, there is a need of adequate exposure assessment of the electromagnetic field levels in some selected high populated urban areas especially around hospitals, schools, kindergartens to ensure that the power density levels are well below the prescribed threshold limits. The report presents an exposure assessment of electromagnetic field emitted by telecommunication sources (base stations) which has been performed at selected “sensitive” areas around hospitals, schools, kindergartens, located throughout Sofia. The study is conducted under the BG07 Program: Public Health Initiatives with the financial support of the Norwegian Financial Mechanism 2009-2014 and the European Economic Area Mechanism, 2009-2014, entitled “Improving control and information systems in risk prevention and healthcare”. Different methods of exposure assessments have been used: in-situ measurements (outdoor spot measurements of electromagnetic field values) using non- frequency selective and frequency selective measurement methods, as well as a broadband EMF monitoring for continuous measurement of the total EMF from all surrounding telecommunication sources that were also provided. The analyses of the measurement results suggest that the exposure levels to RF-EMFs are generally well below the reference levels defined by the national and European legislation. The electromagnetic field levels at the most studied locations are lower (up to 50%) than the limit values according to the Bulgarian legislation and less than 1% of the limit values according to the European legislation for the frequency band about 900 MHz.
  1. J. T. Rowley, K. H. Joyner, “Comparative international analysis of radiofrequency exposure surveys of mobile communication radio base stations,” J. Expo. Sci. Environ. Epidemiol., vol. 22, no 3, pp. 304 – 315, May-Jun. 2012.
    DOI: 10.1038/jes.2012.13
    PMid: 22377680
    PMCid: 3347802
  2. W. Joseph, L. Verloock, F. Goeminne, G. Vermeeren, L. Martens, “Assessment of general public exposure to LTE and RF sources present in an urban environment,” Bioelectromagnetics, vol. 31, no 7, pp. 576 – 579, Oct. 2010.
    DOI: 10.1002/bem.20594
    PMid: 20607741
  3. Ts. Shalamanova at al., “Results of Measurements of Electromagnetic Fields around Base Stations for Mobile Communication in Bulgaria,” in Proc. 9th Nat. Conf. Biomedical Physics and Engineering, Bulgaria, 2004, pp. 129 – 134.
  4. M. Ivanova, Ts. Shalamanova, “Measurements of RF radiation around base stations for mobile communication in Bulgaria,” J. Environ. Prot. Ecol., vol. 6, no. 2, pp. 328 – 336, Jan. 2005.
    Retrieved from: https://23fc9e25-a-b7e9b206-s-sites.googlegroups.com/a/jepe-journal.info/jepe-journal/vol-6-no-2/V6N2328-3362005.pdf;
    Retrieved on: Aug. 12, 2018
  5. M. Israel, Iv. Topalova, Ts. Shalamanova, M. Ivanova, V. Zaryabova, “Methods for selection of measurement points in urban areas with high density of EMF sources and such with “sensitive places and buildings,” Journal of Biomedical and Clinical Research, vol. 8, no. 1, suppl. 1, 2015.
    Retrieved from: https://ephconference.eu/repository/countries/Abstract_Book_Vol_8-1Suppl.pdf;
    Retrieved on: Aug. 10, 2018
  6. Basic standard for the in-situ measurement of electromagnetic field strength related to human exposure in the vicinity of base stations, EN ISO 50492:2008, Jan. 31, 2009.
    Retrieved from: https://shop.bsigroup.com/ProductDetail/?pid=000000000030268384;
    Retrieved on: Aug. 12, 2018
  7. Basic standard on measurement and calculation procedures for human exposure to electric, magnetic and electromagnetic fields (0 Hz – 300 GHz), EN ISO 50413:2008, Jan. 1, 2008.
    Retrieved from: https://infostore.saiglobal.com/en-gb/standards/i-s-en-50413-2008-873723_SAIG_NSAI_NSAI_2077363/;
    Retrieved on: Aug. 12, 2018
  8. Министерство на здравеопазването. (14.03.1991). Наредба № 9 от 14.03.1991 г. за пределно допустими нива на електромагнитни полета в населени територии и определяне на хигиенно-защитни зони около излъчващи обекти. (Ministry of Health. (Mar. 14, 1991). Ordinance No. 9 from 14.03.1991 on the limit values of electromagnetic fields in populated areas and the determination of hygienic-protective zones around radiating objects.)
    Retrieved from: http://econ.bg/Нормативни-актове/Наредба-9-от-14-03-1991-г-за-пределно-допустими-нива-на-електромагнитни-полета-в-населени-_l.l_i.128561_at.5.html;
    Retrieved on: Aug. 13, 2018
  9. The Council of the European Union. (Jul. 12, 1999). 1999/519/EC Council Recommendation of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz).
    Retrieved from: https://www.anacom.pt/streaming/1999-519-CE.pdf?contentId=33252&field=ATTACHED_FILE
    Retrieved on: Aug. 13, 2018


Kalinka Velichkova, Dora Krezhova

Pages: 202–208

DOI: 10.21175/RadJ.2018.03.034

Received: 15 JUN 2018, Received revised: 9 DEC 2018, Accepted: 16 DEC 2018, Published online: 28 FEB 2019

Leaf chlorophyll (Chl) content, at the leaf and canopy level, is an important biochemical parameter because of its crucial role in photosynthesis and in plant functioning. Furthermore, it provides an indication of the plant nutritional state and stress. Due to the reliable, rapid, and non-destructive advantages, hyperspectral remote sensing plays a significant role in monitoring and assessing the plant biophysical variables. In this study, a set of Chl-related vegetation indices (VIs) derived from the leaf reflectance data of young pepper plants infected by Cucumber Mosaic Virus (CMV) were tested for estimating the changes in the Chl content and plant status. Hyperspectral reflectance data were collected by means of a portable fiber-optics spectrometer in the spectral range of 350-1100 nm. The effect of two growth regulators, MEIA (beta-monomethyl ester of itaconic acid) and ВТН (benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester), on the Chl content and respectively on the development of the viral infection was investigated too. Four categories VIs: normalized difference (ND) VIs; simple ratio (SR) VIs; single-band reflectance or simple difference (SD) VIs, and some other forms of VIs, were tested using statistical analyses (ANOVA and Tukey-Kramer’s tests) to explore their potentials in the Chl content estimation. To enhance the sensitivity of the VIs, modified VIs were tested in some other combinations of narrow bands. The statistical analyses showed that the Modified Red Edge Simple Ratio (MRESR) index, Vogelmann Red Edge index (VREI1), and Pigment index (PI) were most sensitive to the Chl content changes. The Normalized Difference VI (NDVI) and Triangular Vegetation Index (TVI) turned out to be insensitive to Chl variations. The rest of the VIs were responsible for Chl variations but with less sensitivity.
  1. F. Fiorani, U. Schurr, “Future Scenarios for Plant Phenotyping,” Annu. Rev. Plant. Biol., vol. 64, pp. 267 – 291, Apr. 2013.
    DOI: 10.1146/annurev-arplant-050312-120137
    PMid: 23451789
  2. E. Levizou, P. Drilias, G. K. Psaras, Y. Manetas, “Nondestructive assessment of leaf chemistry and physiology through spectral reflectance measurements may be misleading when changes in trichome density co-occur,” New Phytol., vol. 165, no. 2, pp. 463 – 472, Feb. 2005.
    DOI: 10.1111/j.1469-8137.2004.01250.x
    PMid: 15720657
  3. D. A. Sims, J. A. Gamon, “Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages,” Remote Sens. Environ., vol. 81, no. 2-3, pp. 337 – 354, Aug. 2002.
    DOI: 10.1016/S0034-4257(02)00010-X
  4. A. P. Leone, N. Leone, S. Rampone, “An application of VIS-NIR reflectance spectroscopy and artificial neural networks to the prediction of soil organic carbon content in Southern Italy,” Fresen. Environ. Bull., vol. 22, no. 4b, pp. 1225 – 1229, Apr. 2013.
    Retrieved from: http://xoomer.virgilio.it/rampon/visnir20132.pdf;
    Retrieved on: Feb. 12, 2018
  5. C. Zhang, I. Filella, M. F. Garbulsky, J. Peñuelas, “Affecting factors and recent improvements of the photochemical reflectance index (PRI) for remotely sensing foliar, canopy and ecosystemic radiation-use efficiencies,” Remote Sens., vol. 8, no. 9, pp. 677 – 709, Sep. 2016.
    DOI: 10.3390/rs8090677
  6. Y. C. Tian et al., “Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space- based hyperspectral reflectance,” Field Crops Res., vol. 120, no. 2, pp. 299 – 310, Jan. 2011.
    DOI: 10.1016/j.fcr.2010.11.002
  7. A. J. S. Neto, D. de Carvalho Lopes, J. C. F. Borges Júnior, “Assessment of Photosynthetic Pigment and Water Contents in Intact Sunflower Plants from Spectral Indices,” Agriculture, vol. 7, no. 2, pp. 8 – 16, Feb. 2017.
    DOI: 10.3390/agriculture7020008
  8. S. Lu et al., “Comparing vegetation indices for remote chlorophyll measurement of white poplar and Chinese elm leaves with different adaxial and abaxial surfaces,” J. Exp. Bot., vol. 66, no. 18, pp. 5625 – 5637, Sep. 2015.
    DOI: 10.1093/jxb/erv270
    PMid: 26034132
    PMCid: PMC4585420
  9. P. J. Zarco-Tejada et al., “A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index,” Remote Sens. Environ., vol. 138, pp. 38 – 50, Nov. 2013.
    DOI: 10.1016/j.rse.2013.07.024
  10. D. Krezhova, S. Maneva, N. Petrov, K. Velichkova, „Remote sensing of the influence of the biotic stress on plant biophysical variables,” Radiation & Applications, vol. 2, no. 1, pp. 46 – 52, Apr. 2017.
    DOI: 10.21175/RadJ.2017.01.010
  11. E. R. Hunt, P. C. Doraiswamy, J. E. McMurtrey, C. S. T. Daughtry, E. M. Perry, “A Visible Band Index for Remote Sensing Leaf Chlorophyll Content at the Canopy Scale,” Int. J. Appl. Earth Obs. Geoinf., vol. 21, pp. 103 – 112, Apr. 2013.
    DOI: 10.1016/j.jag.2012.07.020
  12. N. Petrov, M. Stoyanova, M. Valkova, “Antiviral activity of plant extract from Tanacetum vulgare against Cucumber Mosaic Virus and Potato Virus Y,” J. BioSci. Biotechnol, vol. 5, no. 2, pp. 189 – 194, Jul. 2016.
    Retrieved from: http://www.jbb.uni-plovdiv.bg/documents/27807/1703628/2016-5-2-189-194.pdf;
    Retrieved on: Mar. 12, 2018
  13. J. Rouse, R. Haas, J. Schell, D. Deering, Monitoring Vegetation Systems in the Great Plains with ERTS, Rep. PAPER-A20, NASA, Washington (DC), USA, 1973.
    Retrieved from: https://ntrs.nasa.gov/search.jsp?R=19740022614;
    Retrieved on: Mar. 12, 2018
  14. S. Lu et al., “A robust vegetation index for remotely assessing chlorophyll content of dorsiventral leaves across several species in different seasons,” Plant Methods, vol. 14, no. 15, pp. 2 – 15, Feb. 2018.
    DOI: 10.1186/s13007-018-0281-z
    PMid: 29449875
    PMCid: PMC5812224
  15. C. Jurgens, “The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data,” Int. J. Remote Sens., vol. 18, no. 17, pp. 3583 – 3594, Nov. 1997.
    DOI: 10.1080/014311697216810
  16. C. B. Datt, “A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests Using Eucalyptus Leaves,” J. Plant Physiol., vol. 154, no. 1, pp. 30 – 36, Jan. 1999.
    DOI: 10.1016/S0176-1617(99)80314-9
  17. J. A. Gamon, J. Peñuelas, C. B. Field, “A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency,” Remote Sens. Environ., vol. 41, no. 1, pp. 35 – 44, Jul. 1992.
    DOI: 10.1016/0034-4257(92)90059-S
  18. M. F. Garbulsky, J. Peñuelas, J. A. Gamon, Y. Inoue, I. Filella, “The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: a review and meta-analysis,” Remote Sens. Environ., vol. 115, no. 2, pp. 281 – 297, Feb. 2011.
    DOI: 10.1016/j.rse.2010.08.023
  19. G. A. Blackburn, “Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves,” Intern. Remote Sens., vol. 19, no. 4, pp. 657 – 675, 1998.
    DOI: 10.1080/014311698215919
  20. J. L. Rougean, F. M. Breon, “Estimating PAR absorbed by vegetation from bidirectional reflectance measurements,” Remote Sens. Environ., vol. 51, no. 3, pp. 375 – 384, Mar. 1995.
    DOI: 10.1016/0034-4257(94)00114-3
  21. A. A Gitelson, Y. Gritz, M. N. Merzlyak, “Relationships between leaf chlorophyll content and spectral reflectance and algorithms for nondestructive chlorophyll assessment in higher plant leaves,” J. Plant Physiol., vol. 160, no. 3, pp. 271 – 282, Mar. 2003.
    DOI: 10.1078/0176-1617-00887
  22. J. Vogelmann, B. Rock, D. Moss. “Red Edge Spectral Measurements from Sugar Maple Leaves,” Intern. J. Remote Sensing, vol. 14, no. 8, pp. 1563 – 1575, 1993.
    DOI: 10.1080/01431169308953986
  23. A. A. Gitelson, A. Viña, V. Ciganda, D. C. Rundquist, T. J. Arkebauer, “Remote estimation of canopy chlorophyll content in crops,” Geophys. Res. Lett., vol. 32, no. 8, L08403, Apr. 2005.
    DOI: 10.1029/2005GL022688
  24. M. S. Kim, “The use of narrow spectral bands for improving remote sensing estimation of fractionally absorbed photosynthetically active radiation (fAPAR),” M.Sc. dissertation, University of Maryland, Dept. of Geography, College Park (MD), USA, 1994.
  25. S. T. Daughtry, C. L. Walthall, M. S. Kim, E. B. de Colstoun, J. E. McMurtrey III, “Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance,” Remote Sens. Environ., vol. 74, no. 2, pp. 229 – 239, Nov. 2000.
    DOI: 10.1016/S0034-4257(00)00113-9
  26. N. Broge, E. Leblanc, “Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area and canopy chlorophyll density,” Remote Sens. Environ., vol. 76, no. 2, pp. 156 – 172, May 2000.
  27. Ch. Zaiontz, Real Statistics Using Excel: Studentized Range q Table, Real Statistics.
    Retrieved from: http://www.real-statistics.com/statistics-tables/studentized-range-q-table/;
    Retrieved on: Mar. 12, 2018