
1 

 

THE SPECIAL TRANS FUNCTIONS THEORY FOR THE DEGREE OF THE NUCLEAR FUEL BURN-

UP ESTIMATION* 

Slavica M. Perovich1,2, Martin P. Calasan1** 

1University of Montenegro, Department of Electrical Engineering 
2University of Montenegro, Faculty of Maritime Studies  

Abstract. The problem of finding an exact analytical closed form solution to the degree of the nuclear fuel burn-up 
simple transcendental equation is studied in some detail, by using the Special trans functions theory (STFT). 
Structure of the STFT solutions, derivations, numerical results and graphical simulations confirm the validity and 
base principle of the STFT.  

Key words: The degree of the nuclear fuel burn-up, the special trans functions theory-STFT, analytical closed form 
solution, advanced STFT iterative procedure, special function. 

DOI: 10.21175/RadJ.2016.01.01 

                                                           
* The paper was presented at the Third International Conference on Radiation and Applications in Various Fields of Research (RAD 
2015), Budva, Montenegro, 2015. 
** martinc@t-com.me 

1. INTRODUCTION 

The subject of our interest presented within this 
article is oriented towards determining of the degree of 
the nuclear fuel burn-up, for some simple cases, by 
using the Special trans functions theory (STFT). 
Namely, the modified Lambert nonlinear functional 
equation, which describes the degree of the nuclear fuel 
burn-up, is solved analytically in closed form (as a 

special trans function,   t,λ,λ,α,Ntran 21NF  

or,  d,DtranNF ). Also, the Lambert equation is solved 

by using an advanced iterative procedure, within the 
STF theory. Let us note that, for instance, this 
theoretical problem is defined in [1 -5]. Among firstly 
published methods available in literature, attention 
was focused on measuring the neutron radiation. In 
references, [1, 2], in some detail, the problem is 
described, as follows: The degree of the nuclear fuel 
burn-up is necessary parameter for the analysis of the 
following problems in nuclear energetic: 

 The optimal arrangement of spent fuel 
structures in laying down and keeping basins; 

 Insuring of the nuclear safety and control 
while the nuclear fuel reprocessing, 

 The Irradiation risk prognosis; 

 Examining of the Irradiation behavior of the 
material; 

 The fulfillment of the agreement of the 
nuclear weapons nonexttinslon, especially 
connected with the export of nuclear power 
plants; 

 Making possible the maximal generating of 
energy. 

The advantage of this way of control (the method 
based on the measurement of the neutron radiation) is 
reflected in high sensitivity, simplicity and reliability of 

the technical equipment, operability.  In addition, the 
degree of the nuclear fuel burn-up is a parameter of 
vital importance in the description of the irradiation 
behavior of the material. 
        In contrast to the gamma-spectrometry method, 
the neutron measurements can be performed, 
practically, immediately after the drawing of fuel 
structures out of the reactor, as it is enough to enable 
only the necessary irradiation stability of the detector 

on  radiation. In spent fuel structures, as a source of 
neutrons, long living nuclides prevail over what 
permits the burn-up control at any laying down time 
which represents the practical interest. This also 
contributes to the role of the history of radiation on the 
interpretation of results, to be decreased. 
      The dependence of the specific total neutron output 

on the burn-up degree in the diapason >15 MWd/kg 
is defined by the spontaneous fission of the curium 

nuclides Cm242

 and Cm244

 where the contribution 

Cm242

 is irrelevantly small at the laying down time t>3 
years due to the short half - life (0.45 years). The 

contribution of the (, n) reaction is essential only at 

small burn-up degrees (<10Mwd/kg), and if, at the 
same time, the laying down time is great (t>10 years). 

It becomes predominant due to Am241
 formation. 

      The dependence of the total neutron output on the 
burn-up degree is a very nonlinear function, what 
complicates the measurement of the mean burn-up 
degree according to the quantity of spent fuel 
structures in the neutron measurement order. Namely, 
the computer program processing of results of discrete 
or continual measurements of the neutron flux is 
necessary for the burn-up profile measurement. The 
processing algorithm is essentially simplified under the 
condition when spent fuel structures are laid down for 
more than three years (t>3 years), and when burn-up 

degree values are >15MWd/kg. In that case the 
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counting speed of the detector is connected with the 
burn-up degree by the following relation 
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where oN  and oω  are standardized constants;  is 

the decay constant Cm244

; n = 4.1 – 4.3; t is the laying 
down time counted from the moment of the three 
years period of laying down. However, in a general 
case it is necessary to solve the transcendental 
equation of the type 
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where the first term presents the contribution 

Cm244

244 in the neutron radiation counting speed. 

The second term presents the contribution Cm242

. 

1.1. Concerning the degree of the nuclear fuel burn-
up transcendental equation  

  The subject of the theoretical analysis presented 
within this subsection is analytical in closed form 
solving of the Eq.(1), where N is  the neutron radiation 

counting speed,  denotes the burn-up degree,  is the 

initial  fuel enrichment in U235
, and t is the laying 

down time after taking fuel elements and structures out 
of the reactor (i.e. after finishing of irradiation). 

Exponents 21 n,n  are: 75.1n,1.4n 21  , while 

the decay constants are 0382.0λ1   and 55.1λ2  , 

per year, respectively.  

 In addition, the empiric coefficients 3.266 and 
0.272 take care of different specific neutron outputs for 
these nuclides as well as of the unit’s proportion and 
standardization. 

After structural modification Eq. (1) takes the form 

1ωBωA 21 nn
                                       (2) 
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Or, for given numeric parameters, we have 
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Analogically, from Eq. (2) after simple 
modifications, we have 

1ψDψ d                                                      (3) 
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Consequently, from Eq. (4), formula for burn-up 
degree takes the form: 
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     The modified Lambert nonlinear functional 
equation of transcendental type (Eq. (3)) is solvable 
using the Special Tran Function Theory [6-23]. Let us 
note that Perovich’s Special Tran Functions Theory 
(STFT), has been proved to be a very powerful theory 
for solving transcendental equations, some integral and 
integro-differential equations, and, obtaining exact 
analytical closed-form solutions. Examples of STFT 
application are shown in articles concerning the  
closed-form solution genesis in: the theory of neutron 
slowing down [[6],[7],[16]], the nonlinear circuit 
theory [[8],[16],[22]], the linear transport theory 
[[9],[16],[20]], the Hopfield neuron analysis [11], some 
families of transcendental equations analysis 
[[12],[16],[17]], the solar cell theoretical analysis 
[[13],[18],[22]], the Plutonium temperature estimation 
[14], the ambient temperature estimation [[15], [16]], 
the Lambert transcendental equations analysis 
[[16],[17],[23]], as well as in the problem in the 
engineering materials [19], [21],[22]], etc. 
    Let us note that in more general cases Eq. (1) takes 
the form  
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where M is number of nuclides. Determining analytical 
closed form solution to the above transcendental 
equation will be the subject of our further research. 

2. OBTAINING AN ANALYTICAL CLOSED FORM 

SOLUTION TO THE MODIFIED LAMBERT 

TRANSCENDENTAL EQUATION (3) 

         This section contains an analytical closed form 
solution to the Eq. (3), obtained by using the STFT. 
Namely, in several references [[16], [17], [23] et al], the 
modified Lambert transcendental Eq. (3) is solved by 
direct application of the STFT. Consequently, we have 

  d,Dtranψ NF                                                         

where  d,DtranNF  is a new special function defined 

as 
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where [x] denotes the greatest integer less than or 
equal to x. Now, more explicitly, from equations (5), (6) 
and (7) we have 
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     For practical analysis and numerical calculations by 

Mathematica program application the formula (6) 

takes the form                                
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where 
P

ψ denotes the numerical value of the 

transcendental number ψ given with P accurate digits, 

where P is defined as 
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and, Error function G is defined as 
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      Note that computational complexity for 

determining numerical value
P

ψ , from equation (11), 

depends of nuclides parameters D and d. For some real 
values of parameters D and d, computational 
complexity is not easy. Note that some numerical 
results for W (formally - mathematical identical 

physical phenomenon for), based on equation (11), 
are given in Table I in [23]. It is more than clear that 
STFT works! Unfortunately, for some real parameters 
D and d, the sumlimit in the formulae (11), within 
Mathematica program, is not small. Consequently, an 
advanced STFT iterative procedure is presented in next 
section. 
      Note, that sections 2 and 3, in this article, are 
identical with sections II and III in [23], in formally-
mathematical sense. Let us note that between physical 
phenomenon of the nuclear fuel burn-up and physical 
phenomenon of current in the RC diode circuit there is 
absolutely no correlation. 

3. STFT ADVANCED ITERATIVE PROCEDURE 

FOR SOLVING TRANSCENDENTAL EQUATION 

(3) 

     The subject of the theoretical analysis presented 
here is obtaining a solution to the modified Lambert 
transcendental equation (3) with arbitrary number of 
accurate digits in the numerical structure, by using the 
advanced STFT iterative procedure.  

   The outline of the iteration process begins with the 

certain value of. After that, the second value of  is 

obtained from Eq. (3) in the form 
    dD ψ1ψ 12   If 

 ψ2
 does not satisfy the error criterion     εψψ 12  , 

where ε  is an arbitrary small real number, then a new 

value of  is found from equation (3) using 
 ψ2

 and 

the whole procedure is repeated. Let us note that 
general scheme of the advanced STFT iterative 
procedure takes the form 

                      
    d1nn ψD1ψ  .       (12)                          

where n is number of iteration. For instance, if number 
of iteration is 10 then the advanced STFT iterative 
formula takes the form 
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 

   424 ...))))))))1..(...1

(......1(1(1(1(1(1(1(1

ψ

 





N

ddddddddd

N

N

DDD

DDDDDDDD  

where 



S. M. Perovich et al., The Special Trans Functions Theory…, Rad. Applic., 2016, 1, 1, 1-6 
 

 

4 

 

 ddDDD ψ11 1

2      

      Let us note that from Eq. (5) value of the nuclear 
burn-up degree is estimated with arbitrary number of 
accurate digits in the numerical structure. Namely, 
expression to the degree of nuclear fuel burn-up takes 
the form  
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or, more explicitly 
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4. NUMERICAL RESULTS 

      In this section, for the practical numerical analysis 
of Eq. (14), we have used the following nuclides 

parameters: 75.1n,1.4n 21  , while the decay 

constants are 0382.0λ1    and 55.1λ2  , per year, 

respectively. 
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Figure 1. The degree of nuclear fuel burn-up as a function of 

the initial fuel enrichment in U235
, for various values of t 

Let us note that obtained numerical results obtained by 
using the Mathematica program and its graphical 
results are given in Table 1, and in Figs. 1,2 and 3. 
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Figure 2. Graphical 3D presentation of the function 

 tf ,αω   
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Figure 3. Graphical 3D presentation of the function 

 tf ,αω  for various values of N 

Table 1. Numerical values to the degree of the nuclear fuel 

burn-up and its precision P, obtained for various values of t,  
and N 

t 
year 

N   P 

0.5 3700 

0.018 3.757569… 16 
0.022 4.108552… 17 
0.026 4.425617… 17 
0.030 4.716607… 16 
0.034 4.986764… 16 

1.5 45000 

0.018 7.530785… 18 
0.022 8.234213… 16 
0.026 8.869663… 17 
0.030 9.452854… 17 
0.034 9.994294… 16 

2.5 225000 

0.018 11.29761… 16 
0.022 12.35289… 16 
0.026 13.30619… 17 
0.030 14.18109… 17 
0.034 14.99335… 16 

3.5 700000 

0.018 15.04496… 17 
0.022 16.45027… 18 
0.026 17.71977… 16 
0.030 18.88486… 16 
0.034 19.96655… 16 



S. M. Perovich et al., The Special Trans Functions Theory …, Rad. Applic., 2016, 1, 1, 1-6 
 

 

5 

 

4.5 1.7·106 

0.018 18.85560… 16 
0.022 20.61685… 18 
0.026 22.20789… 17 
0.030 23.66808… 17 
0.034 25.02374… 17 

5.5 3.5·106 

0.018 22.69766… 18 
0.022 24.81778… 16 
0.026 26.73302… 18 
0.030 28.49075… 16 
0.034 30.12264… 17 

6.5 6.2·106 

0.018 26.33871… 17 
0.022 28.79893… 17 
0.026 31.02140… 16 
0.030 33.06109… 16 
0.034 34.95476… 16 

7.5 1.0·107 

0.018 29.87288… 17 
0.022 32.66321… 16 
0.026 35.18390… 16 
0.030 37.49728… 17 
0.034 39.64505… 17 

8.5 1.6·107 

0.018 33.81496… 16 
0.022 36.97351… 16 

0.026 39.82683163… 17 

0.030 42.44549245… 16 

0.034 44.87668168… 17 

        5. CONCLUSIONS 

From the previous sections it is obvious that the 
Special Tran Functions Theory is a consistent approach 
to solving transcendental equations in the degree of 
nuclear fuel burn-up domain for defined case. This 
means that we can obtain a new special 

function  d,DtranNF . New formulae within nuclear 

fuel burn-up theory, Eqs. (11) and (14) being derived in 
the paper, using the STFT, is valid in the numerical 
sense (See Table 1). Thus, obtained analytical solutions 
apart from theoretical value have practical application. 

The theoretical accuracy of the STFT ([6-23] is 
unlimited, and, in physical sense optimal precision is 
attainable with this approach (See Table 1). 

     Also, a new, original STFT advanced iterative 
procedure for determination of the degree of the 
nuclear fuel burn-up with optimal level of precision is 
applied in the paper Eq. (14). Advantage of this STFT 
iterative procedure is evident comparing to 
conventional numerical methods, because starting 
conditions are not needed. Actually, procedure can 

begin with the value of =1. It has to be underlined 
that computation complexity is far better than in 
conventional methods. 

     Namely, advantage of STFT approaches is 
conceptual simplicity, absent of boundary conditions 
and easy numerical implementation.  

        Let us note that formulae (8) and (11) are very 

significant for the gradient coefficient 
















d

ψ
,

D

ψ
 

genesis, for the theoretical analysis of degree of the 
nuclear fuel burn-up in nuclides parameters field. 
Note, in the STFT analysis, that implies all nuclides, 
appears problem in determining the sumlimts, since 
the Heaviside’s functions are so multidisciplinary. 

     Finally, we must declare that determining of the 
degree of the nuclear fuel burn-up, for unlimited 
number of nuclides (real number of nuclides), will be 
the subject of our next research. 
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