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CALCULATION OF THALLIUM HYPERFINE ANOMALY* 
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Abstract. We suggest a method of a computation of hyperfine anomaly for many-electron atoms and ions. At first, we 
tested this method by calculating the hyperfine anomaly for a hydrogen-like thallium ion and obtained fairly good 
agreement with analytical expressions. Then, we did calculations for the neutral thallium and tested an assumption that 
the ratio between the anomalies for s and p1/2 states is the same for these two systems. Finally, we come up with 
recommendations about the preferable atomic states for the precise measurements of the nuclear g factors. 
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1. INTRODUCTION 

In recent years, the precision achieved in resonant 
ionization spectroscopy experiments coupled with 
advances in atomic theory has enabled new atomic 
physics based tests of nuclear models. Understanding 
the occurrence of shape coexistence in atomic nuclei is 
one of them. This phenomenon is associated with the 
existence of both the near-spherical and deformed 
structures of nuclei for neutron-deficient isotopes near 
the value of Z = 82 closed shell [1]. The measurements 
of hyperfine constants and isotope shifts are highly 
sensitive to the changes of the nuclear charge and 
magnetic radii because they depend on the behavior of 
the electron wave function near the nucleus. The 
hyperfine structure (HFS) splitting measurements can 
serve as a very useful tool for the understanding of the 
shape coexistence phenomena in atomic nuclei. 

Magnetic hyperfine constants A are usually assumed 
to be proportional to the nuclear magnetic moments. 
However, this is true only for the point-like nucleus. For 
the finite nucleus, we need to take into account  
(i) distribution of the magnetization inside the nucleus 
and (ii) dependence of the electron wave function on the 
nuclear charge radius. Former correction is called 
magnetic (Bohr–Weisskopf) [2] and the latter is called 
charge correction (Breit-Rosenthal) [3, 4]. Together, 
these corrections are known as the hyperfine anomaly 
[5]. Below, we discuss how to calculate the hyperfine 
anomaly for many-electron atoms with the available 
atomic packages. We use a thallium atom as a reference 
system for our calculations, because there are 
comprehensive experimental data [6-10] and many 
theoretical calculations for this atom [5, 11-14]. 

Shabaev [5] and Shabaev et al. [11] found the 
analytical expressions for the hyperfine anomaly for  
H-like thallium ion. For the neutral thallium, there is 
the numerical calculation by Mårtensson-Pendrill [12]. 

                                                           
* The paper was presented at the Fifth International Conference on Radiation and Applications in Various Fields of Research 
(RAD 2017), Budva, Montenegro, 2017. 
** lenaakonovalova@gmail.com 

Experimentally, HFS anomaly is studied much better 
for a neutral Tl than for a respective H-like ion. In the 
work [15], it has been suggested that the ratio between 
the anomalies for s and p1/2 states remains constant for 
these two systems. Here we try to test this assumption. 

We use the atomic package [16], which is based on 
the original Dirac-Hartree-Fock code [17]. This package 
is often used to calculate different atomic properties 
including hyperfine structure constants of Tl [13,14],  
Yb [18], Mg [19], and Pb [20]. 

2. THEORY AND METHODS 

A four component Dirac wave function of an 
electron in a spherically symmetric atomic potential can 
be written as [17]: 

𝜓𝑛,𝜅,𝑚(𝒓) =
1

𝑟
(

𝑃𝑛,𝜅(𝑟)Ω𝜅,𝑚(𝜔)

−𝑄𝑛,𝜅(𝑟)Ω−𝜅,𝑚(𝜔)
),  (1) 

where the relativistic quantum number κ=(𝑙 − 𝑗)(2j +
1) and 𝛺κ,m is the spherical spinor. In these notations, 

the radial integral for the magnetic hyperfine constant 
for the point-like nuclear magnetic moment in the 
origin has the form: 

𝐼𝑛′,𝜅′,𝑛,𝜅 = ∫ (𝑃𝑛′,𝜅′
∞

0
𝑄𝑛,𝜅 + 𝑄𝑛′,𝜅′𝑃𝑛,𝜅)

𝑑𝑟

𝑟2.  (2) 

 In the case of uniformly distributed magnetic 
moment over the nucleus of radius 𝑅𝑁 the part of this 
radial integral inside the nucleus modifies to [12]: 

𝐼𝑛′,𝜅′,𝑛,𝜅
𝑛𝑢𝑐 = ∫ (𝑃𝑛′,𝜅′

𝑅𝑁

0
𝑄𝑛,𝜅 + 𝑄𝑛′,𝜅′𝑃𝑛,𝜅)

𝑟𝑑𝑟

𝑅𝑁
3 .   (3) 

Outside the nucleus we can still use the integrand 
from Eq. (2). 

In our package, we use the model of the uniformly 
charged ball and, inside the nucleus we use Taylor 
expansion for the radial functions P and Q: 
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𝑃𝑛,𝜅(𝑟)|𝑟≤𝑅𝑁
= 𝑟|𝜅| ∑ 𝑃𝑛,𝜅,𝑘𝑥𝑘𝑀

𝑘=0 ,   𝑥 =
𝑟

𝑅𝑁
.   (4) 

With the help of this expansion, we can calculate the 
integral (3): 
 

𝐼𝑛′,𝜅′,𝑛,𝜅
𝑛𝑢𝑐 =

𝑅𝑁
|𝜅′|+|𝜅|−1 ∑ ∑

𝑃𝑛′,𝜅′,𝑘𝑄𝑛,𝜅,𝑚−𝑘+𝑄𝑛′,𝜅′,𝑘𝑃𝑛,𝜅,𝑚−𝑘

|𝜅′|+|𝜅|+𝑚+2
𝑚
𝑘=0

𝑀
𝑚=0 . (5) 

Note that nuclear contribution to the integral (2) can 
be written as: 

𝐼𝑛′,𝜅′,𝑛,𝜅
𝑛𝑢𝑐,0 =

𝑅𝑁
|𝜅′|+|𝜅|−1 ∑ ∑

𝑃𝑛′,𝜅′,𝑘𝑄𝑛,𝜅,𝑚−𝑘+𝑄𝑛′,𝜅′,𝑘𝑃𝑛,𝜅,𝑚−𝑘

|𝜅′|+|𝜅|+𝑚−1
𝑚
𝑘=0

𝑀
𝑚=0 .  (6) 

Using expression (6) for two different nuclear radii, 
we can calculate the charge correction to atomic HFS, 
while using the expression (5) we simultaneously 
account for the charge and magnetic corrections. 
However, these two models are not sufficiently flexible 
to accurately describe the hyperfine anomaly. 
Expressions (2) and (3) correspond to two variants of 
the distribution of the magnetic moment: either 
homogeneous distribution over the whole nucleus, or 
point-like dipole in the origin. Introducing the magnetic 
radius 𝑅𝑀, we get either𝑅𝑀 = R𝑁or 𝑅𝑀 = 0. If we want to 
allow for the arbitrary value 𝑅𝑀 ≤ 𝑅𝑁, we need to 
combine the integrand from Eq. (3) for r < R𝑀 with the 
integrand from Eq. (2) for 𝑅𝑀 ≤ 𝑟 ≤ 𝑅𝑁. Then we can 
write the integral over the nucleus as 

𝐼𝑛′,𝜅′,𝑛,𝜅
𝑛𝑢𝑐 (𝑅𝑁, 𝑅𝑀) = 𝐼𝑛′,𝜅′,𝑛,𝜅

𝑛𝑢𝑐 (𝑅𝑀) + (𝐼𝑛′,𝜅′,𝑛,𝜅
𝑛𝑢𝑐,0 (𝑅𝑁) −

𝐼𝑛′,𝜅′,𝑛,𝜅
𝑛𝑢𝑐,0 (𝑅𝑀)),   (7) 

𝐼𝑛′,𝜅′,𝑛,𝜅
𝑛𝑢𝑐 (𝑅𝑀) =

𝑅𝑀

|𝜅′|+|𝜅|−1
∑ ∑

𝑃𝑛′,𝜅′,𝑘𝑄𝑛,𝜅,𝑚−𝑘+𝑄𝑛′,𝜅′,𝑘𝑃𝑛,𝜅,𝑚−𝑘

|𝜅′|+|𝜅|+𝑚+2

𝑚
𝑘=0

𝑀
𝑚=0 (

𝑅𝑀

𝑅𝑁
)

𝑚

, (8) 

𝐼𝑛′,𝜅′,𝑛,𝜅
𝑛𝑢𝑐,0 (𝑅𝑀) =

𝑅𝑀

|𝜅′|+|𝜅|−1
∑ ∑

𝑃𝑛′,𝜅′,𝑘𝑄𝑛,𝜅,𝑚−𝑘+𝑄𝑛′,𝜅′,𝑘𝑃𝑛,𝜅,𝑚−𝑘

|𝜅′|+|𝜅|+𝑚−1

𝑚
𝑘=0

𝑀
𝑚=0 (

𝑅𝑀

𝑅𝑁
)

𝑚

. (9) 

2.1. Isotope effect for magnetic HFS 

Suppose we want to compare hyperfine constants 𝐴1 

and 𝐴2 for two isotopes with nuclear g factors 𝑔(1)
𝐼
 and 

𝑔(2)
𝐼
 (𝑔𝐼  = μ 𝐼⁄ ), nuclear charge radii 𝑅𝑁

(1)
 and 𝑅𝑁

(2)
 , and 

magnetic radii 𝑅𝑀
(1)

 and 𝑅𝑁
(2)

. We can write: 

𝐴1

𝐴2
=

𝑔(1)
𝐼

𝑔(2)
𝐼

(1 − 𝜆𝐶 𝑅𝑁
(1)

−𝑅𝑁
(2)

𝑅𝑁
(1)

+𝑅𝑁
(2) − 𝜆𝑀 𝑅𝑀

(1)
−𝑅𝑀

(2)

𝑅𝑀
(1)

+𝑅𝑀
(2)).   (10) 

The anomaly then has the following form: 

1Δ2 ≡
𝑔(2)

𝐼𝐴1

𝑔(1)
𝐼𝐴2

− 1 = − (𝜆𝐶 𝑅𝑁
(1)

−𝑅𝑁
(2)

𝑅𝑁
(1)

+𝑅𝑁
(2) + 𝜆𝑀 𝑅𝑀

(1)
−𝑅𝑀

(2)

𝑅𝑀
(1)

+𝑅𝑀
(2))(11) 

By solving above equations for several radii, we can 
find 𝜆𝐶 and 𝜆𝑀 and calculate the anomaly for the 
isotopes of interest. Below we will see that parameters 
𝜆𝐶 and 𝜆𝑀 themselves depend on the radii 𝑅𝑁 and 𝑅𝑀. 
Therefore, it is better to use parameters 𝑏𝑁 and 𝑏𝑀 
defined below (see Eq. (18)). 

2.2. Hydrogen-like ions 

It is generally accepted that the observed hyperfine 
constant 𝐴(𝑅𝑁,R𝑀)of a one-electron ion may be 
presented in the following form: 

𝐴(𝑅𝑁,R𝑀)=A0(1 − 𝛿(𝑅𝑁))(1 − 𝜖(𝑅𝑀)).  (12) 

Here 𝐴0 ≡ 𝐴(0,0) is the factor which is independent 
of the nuclear radii and 𝛿(𝑅𝑁) and𝜖(𝑅𝑀) are the nuclear 
charge distribution and magnetic distribution 
corrections respectively. For a given Z and electron 
state, they can be written as: 

𝛿(𝑅𝑁)=b𝑁𝑅𝑁
(2𝛾−1)

,𝜖(𝑅𝑁)=b𝑀𝑅𝑀
(2𝛾−1)

,  (13) 

where 𝑏𝑁 and 𝑏𝑀are the factors which are independent 

of the nuclear radii, γ=√𝜅2 + (αZ)2, and 𝛼 is the fine 
structure constant. The expression for 𝐴0 was obtained 
in the analytical form as [5]: 

𝐴0 =
𝛼(αZ)3𝑔𝐼

𝑗(j+1)

𝑚

𝑚𝑝

𝜅(2𝜅(γ+n
𝑟

)−𝑁)

𝑁4𝛾(4𝛾2−1)
mc2.  (14) 

Here,𝑚 and 𝑚𝑝are the electron and proton masses, 

𝑔𝐼  is the nuclear g factor, j is the total electron angular 

momentum, N=√𝑛𝑟
2 + 2n𝑟

2𝛾 + 𝜅2, 𝑛𝑟  is the radial 
quantum number. 

It follows from Eqs. (12) and (13) that if we calculate 
HFS constant numerically for different 𝑅𝑁 and 𝑅𝑀 , we 
should get the following dependence on the radii: 

𝐴(𝑅𝑁,R𝑀)=A0(1 − 𝑏𝑁𝑅𝑁
2𝛾−1

)(1 − 𝑏𝑀𝑅𝑀
2𝛾−1

) (15) 

This expression defines the dependence of 
parameters 𝜆𝐶and 𝜆𝑀 from (10) on the radii 𝑅𝑁 and 𝑅𝑀. 
For example, on the one hand, we have: 

𝐴(𝑅𝑁+ρ,R
𝑀

)

𝐴(𝑅𝑁−ρ,R
𝑀

)
= 1 − 𝜆𝐶(𝑅𝑁)

𝜌

𝑅𝑁
.  (16) 

On the other hand: 

𝐴(𝑅𝑁+ρ,R𝑀)

𝐴(𝑅𝑁−ρ,R
𝑀

)
= 1 + 2𝜌

𝜕𝐴(𝑅𝑁,R𝑀) 𝜕𝑅𝑁⁄

𝐴(𝑅𝑁,R𝑀)
.  (17) 

Then, from Eq. (16) we get: 

𝜆𝐶(𝑅𝑁) ≈
2(2𝛾−1)𝑏𝑁𝑅𝑁

2𝛾−1

1−𝑏𝑁𝑅𝑁
2𝛾−1 ≈ 2(2𝛾 − 1)𝑏𝑁𝑅𝑁

2𝛾−1
. (18) 

Similar expressions can be obtained for 𝜆𝑀(𝑅𝑀).For 
the point-like magnetic dipole approximation (𝑅𝑀 = 0) 
the magnetic correction is equal to zero, and the 
hyperfine constant can be fitted by the function: 

𝐴(𝑅𝑁, 0) = 𝐴0(1 − 𝑏𝑁𝑅𝑁
2𝛾−1

).  (19) 

For the uniform distribution of the charge and 
magnetic moment with the value of𝑅𝑀 = R𝑁 we get: 

𝐴(𝑅𝑁, 𝑅𝑁) = 𝐴0(1 − (𝑏𝑁 + 𝑏𝑀)𝑅𝑁
2𝛾−1

).  (20) 

2.3. Many-electron atoms 

Since the one-electron radial integrals are defined, 
we can calculate the atomic HFS using many-electron 
wave functions and account for electronic correlations 
as described in Ref. [13]. Using Eqs. (7 – 9), we can 
calculate the atomic HFS constants for arbitrary radii 
𝑅𝑁 and 𝑅𝑀 with the only constraint that 𝑅𝑁 ≥ 𝑅𝑀. We 
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can do configuration interaction calculations with the 
frozen core and few valence electrons. Then we can add 
the core-valence correlation corrections with the help of 
the many-body perturbation theory. At this stage, we 
substitute the valence radial integrals with the effective 
ones, which account for the spin polarization of the core. 
The latter are obtained by solving random-phase 
approximation (RPA) equations. 

Effective radial integrals may have significantly 
different dependence on the parameters of the nucleus 
than initial “bare” integrals. This is particularly true for 
the orbitals with the high angular momentum. Because 
of the centrifugal barrier, these orbitals do not penetrate 
inside the nucleus and bare radial integrals do not 
depend on the nuclear size. On the other hand, spin-
polarization of the core always includes polarization of 
the core s andp1/2 shells. Because of that, all effective 
radial integrals are sensitive to the nuclear charge and 
magnetic distributions. In general, we can divide all 
correlation corrections in two classes: corrections, 
which mix orbitals within one partial wave, and the ones 
which mix different partial waves. For example, the self-
energy type corrections belong to the first class. They 
mix core and valence orbitals of the same symmetry and 
can significantly change the orbital density at the origin. 
Therefore, these corrections change the size of the HFS 
matrix elements. On the other hand, all orbitals of the 
same symmetry have practically the same sensitivity to 
the nuclear distributions. Thus, such correlation 
corrections do not affect parameters 𝑏𝑁 and 𝑏𝑀 and the 
HFS anomaly (11). RPA corrections belong to the second 
class, which significantly contribute to the HFS 
anomaly. 

Measurement of hyperfine anomaly for highly 
charged ions allows experimental study of QED effects 
(see e.g. [21]). Attempts to take into account QED 
corrections in hyperfine structure calculations for such 
systems have already been made [8, 22, 23].  However, 
for neutral atoms QED corrections are sufficiently small 
and should be taken into account only after correlation 
effects. It can be done using the method recently 
described in the article [24]. Note, that dominant QED 
corrections belong to the first class and do not 
significantly affect the HFS anomaly. 

3. RESULTS AND DISCUSSION 

3.1. HFS anomaly for H-like thallium ion 

In this section, we calculate the HFS constants of the 
1s, 2s, and 2p1/2 states of Tl80+ for different radii 𝑅𝑁 and 
𝑅𝑀 and compare our results with the analytical 
expressions from Ref. [5]. Figure 1 shows the 
dependence of the hyperfine constant A(1s) on the radii 
𝑅𝑁 and 𝑅𝑀. We see very good agreement with Eqs. (19) 
and (20). 

Table I summarizes our results for H-like Tl ion. We 
see the perfect agreement of the calculated and 
analytical values of 𝐴0 for all three states. Charge and 
magnetic corrections δ and ε were calculated in Ref. [11] 
for the 1s state of the isotope 203Tl. These analytical 
values are also in a good agreement with our numerical 
results. 

 

Figure 1. The dependence of the HFS constant A(RN , RM) for 
the ground state of H-like Tl ion from nuclear charge and 

magnetic radii. Dots and circles correspond to the computed 
values. Dashed lines correspond to the fits by Eqs. (19) and 

(20). 

Table 1. Compilation of the fitting parameters for HFS of H-
like Tl ion: A0 is HFS constant for point-like nucleus, δ and ε 

are the nuclear charge and magnetization distribution 
corrections parametrized by bN and bM coefficients 

respectively. We use g factor gI = 3.27640. Corrections δ and ε 
for 203Tl are calculated for RN = RM = 0.1306 × 10−3 au. 

 1s 2s 2p1/2 

A0 (THz) fit. 896.4 144.9 45.0 

 Eq. (14) 895.7 144.8 45.0 
bN fit. 0.3441 0.3671 0.0960 
δ(203Tl80+) fit. 0.0988 0.1054 0.0276 

 Ref. [11] 0.0988 – – 
bM fit. 0.0599 0.0638 0.0176 
ε(203Tl80+) fit. 0.0172 0.0183 0.0051 
 Ref. [11] 0.0179 – – 

 

Figure 2 shows how parameters 𝜆 for the 1s state 
depend on the radii 𝑅𝑁 and 𝑅𝑀. We see the perfect 
agreement with the analytical expression (18). On the 
other hand, it means that these parameters strongly 
depend on the nuclear size. Because of that, they cannot 
be treated as a constant even for the isotopes with the 
similar radii. Therefore, it is better to use parameters 𝑏𝑁 
and 𝑏𝑀 defined by Eq. (15). 

According to our calculations (see Table I), the ratios 
of the parameters 𝑏𝑁 and 𝑏𝑀 for 1s and 2s states are close 

to unity: 
𝑏𝑁(1𝑠)

𝑏𝑁(2𝑠)
= 0.937 and 

𝑏𝑀(1𝑠)

𝑏𝑀(2𝑠)
= 0.939. This is 

expected, as wave functions of the same symmetry 
should be proportional to each other inside the nucleus. 

Similar ratios for 1s and 2p1/2 states are 
𝑏𝑁(1𝑠)

𝑏𝑁(2𝑝1 2⁄ )
= 3.58 

and 
𝑏𝑀(1𝑠)

𝑏𝑀(2𝑝1 2⁄ )
= 3.40. Again, one can expect that these 

ratios only weakly depend on the principle quantum 
numbers. 
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Figure 2. Dependence of the parameters λC(RN) and λM (RM) 
(see Eq. (10)) on the charge and magnetic radii of the nucleus 

for the ground state of H-like Tl ion. Computed values 
represented by points. The curves correspond to the fits with 

Eq. (18). 

3.2. HFS anomaly of neutral thallium atom 

The ground configuration of the neutral thallium is 
[1s2 ... 6s2]6p and the ground multiplet includes two 
levels, 6p1/2 and 6p3/2. The lowest level of the opposite 
parity is 7s. Most of the experiments and calculations of 
the HFS in neutral thallium deal with these three levels. 
If we treat thallium as a one-electron system with the 
frozen core [1s2 ... 6s2], we can do the calculation using 
the Dirac-Hartree-Fock (DHF) method. In this case, the 
dependence of the HFS constants on the nuclear radii is 
similar to the one-electron ion. 

In DHF approximation, the HFS constant with the 
value of A(6p3/2) = 1.30 GHz is very small and practically 
does not depend on 𝑅𝑁 and 𝑅𝑀 (see Table II). At the 
same time, the HFS constants A(6p1/2) and A(7s) are 
well described by Eqs. (19, 20) (see Fig. 3). According to 
our calculations, the ratios between the coefficients 𝑏𝑁 
and 𝑏𝑀 for s and p1/2 waves are close to the respective 
ratios in the H-like ion. For example, the ratios of these 
constants for 1s state of the ion and 7s state of the 

neutral atom are 
𝑏𝑁(1𝑠)

𝑏𝑁(7𝑠)
= 0.926 and 

𝑏𝑀(1𝑠)

𝑏𝑀(7𝑠)
= 0.931. 

Atomic ratios for 7s and 6p1/2 are: 
𝑏𝑁(7𝑠)

𝑏𝑁(6𝑝1 2⁄ )
= 3.52 and 

𝑏𝑀(7𝑠)

𝑏𝑀(6𝑝1 2⁄ )
= 3.30, while for the H-like ion we had the 

values of 3.58 and 3.40 respectively. 

Situation changes when we include the spin-
polarization of the core via RPA corrections. These 
corrections mix partial waves and the state 6p3/2 partly 
acquires and p1/2 character. This leads to the significant 
change of the size and even the sign of the constant 
A(6p3/2). At the same time, this constant becomes very 
sensitive to the distributions of charge and magnetic 
moment inside the nucleus. 

RPA corrections for the 7s and 6p1/2 states are 
smaller than for 6p3/2, but also significant. They lead to 

effective mixing of the s and p waves. Because of that, 
the ratios of the respective coefficients decrease a little, 
but are still markedly larger than unity:  

𝑏𝑁(7𝑠)

𝑏𝑁(6𝑝1 2⁄ )
= 2.65, 

𝑏𝑀(7𝑠)

𝑏𝑀(6𝑝1 2⁄ )
= 2.44. 

We conclude that in the DHF+RPA approximation, 
the anomaly for the 7s state is still significantly stronger, 
than for 6p1/2 state. The anomaly for the 6p3/2, on the 
contrary, becomes the largest. In this work we did not 
take into account more correlation corrections, but RPA 
contribution influences the anomaly more strongly than 
others and changes its behavior. When all corrections 
are taken into account our method usually gives an 
accuracy of few percent for neutral atoms, as it was done 
in [14]. 

Table 2. Compilation of the fitting parameters for HFS of 
neutral Tl atom: A0 is HFS constant for point-like nucleus, δ 
and ε are the nuclear charge and magnetization distribution 

corrections parametrized by bN and bM coefficients 
respectively. We use g factor gI = 3.27640. Corrections δ and ε 

for 203Tl are calculated for RN = RM = 0.1306 × 10−3 au. 
Calculations are done within DHF and DHF+RPA 

approximations. 

 
DHF DHF+RPA 

6p1/2 7s 6p3/2 6p1/2 7s 6p3/2 

A0(GHz) 18.130 8.855 1.289 22.684 12.120 -2.4711 

bN 0.1054 0.3708 0 0.1400 0.3714 0.5769 

δ(203Tl) 0.0302 0.1064 0 0.0402 0.1066 0.1656 

bM 0.0195 0.0643 0 0.0254 0.0619 0.0933 

ε(203Tl) 0.0056 0.0185 0 0.0073 0.0178 0.0268 
 

Using the experimentally measured value of the HFS 
anomaly (10) for the ground state 6p1/2 of the thallium 
two stable isotopes 205∆203(6p1/2) = −1.036(3) × 10−4 [6] 
and the ratios (21) calculated here, we can obtain 
corresponding value for the 7s state within 𝑅𝑀=R𝑁 
approximation: 205∆203(7s) = −2.6 × 10−4. This value is 
significantly lower, than experimental value 
of−4.7(1.5)×10−4 obtained in Ref. [7]. 

4. CONCLUSIONS 

In this work, we propose a method for calculation 
hyperfine structure constants of many-electron atoms 
as functions of nuclear charge and magnetic radii 𝑅𝑁 
and 𝑅𝑀 . The HFS anomaly in this method can be 
parametrized by 𝑏𝑁 and 𝑏𝑀 coefficients. If HFS anomaly 
is known from the experiment, then we can use 
coefficients 𝑏𝑁 and 𝑏𝑀 to determine differences between 
these radii. Alternatively, we can use these coefficients 
to improve the accuracy for nuclear g factors of the 
short-lived isotopes, obtained from the ratios of the HFS 
constants. We tested this method by calculating the HFS 
constants of H-like thallium ion and obtained fairly 
good agreement with the analytical expressions from 
Refs. [5, 11]. Then we made the calculations for neutral 
thallium atom described as a one-electron system. In 
the Dirac-Hartree-Fock approximation, the ratios 
between hyperfine anomalies of s and p1/2 states of the 
neutral Tl atom and respective H-like ion are the same. 
However, when we include spin-polarization of the core 
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via RPA corrections, only the hyperfine anomaly for the 
7s state remains stable. The ratios between 7s and 6p1/2 
states change by roughly 30%, and the anomaly for the 
6p3/2 state becomes very large. We conclude that for the 
precision measurements of g factors it is preferable to 
use the hyperfine constants for s states, while the p3/2 
states are least useful. 
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