Volume 3, Issue 2

Table of contents

Invited review paper

Radiation Protection

ENVIRONMENTAL RADIATION MONITORING AND RADIOLOGICAL ASSESSMENTS AT THE IRT-SOFIA NUCLEAR SITE

Kiril Krezhov, Tzvetana Nonova, Alexander Mladenov, Dobromir Dimitrov

Pages: 64-70

DOI: 10.21175/RadJ.2018.02.012

Received: 2 JUN 2018, Received revised: 22 NOV 2018, Accepted: 27 NOV 2018, Published online: 27 DEC 2018

We report on the findings from the short- and long-term environmental monitoring in selected control points within the IRT-Sofia nuclear site, which is an important part of the radiation and radiological surveillance during the operation and maintenance of the facilities at the Nuclear Scientific Experimental and Educational Centre (NSEEC) of the Institute for Nuclear Research and Nuclear Energy. Consideration is given to experimental evidence and analyses covering the last 8 years and the overlap issues with environmental data accumulated from 1961 to 2008 are commented upon.
  1. Агенция за ядрено регулиране. (28.6.2002). Закон за безопасно използване на ядрената енергия. (Nuclear Regulatory Agency. (Jun. 28, 2002).Act on the Safe Use of Nuclear Energy.)
    Retrieved from: http://www.bnra.bg/bg/documents/legislation/laws/zbiae-2018.pdf;
    Retrieved on: Jan. 1, 2018
  2. Агенция за ядрено регулиране. (14.2.2018). Наредба за радиационна защита. (Nuclear Regulatory Agency. (Feb. 14, 2018) Regulation on radiation protection.)
    Retrieved from: http://www.bnra.bg/bg/documents/legislation/regulations/merged18p20-pr1234.pdf;
    Retrieved on: Jan. 23, 2018
  3. Radiological monitoring of the environment of a nuclear facility, STUK Guide YVL C.7/19, Radiation and nuclear safety authority, Helsinki, Finland, 2016.
    Retrieved from: https://www.finlex.fi/data/normit/43021/YVL_C.7e.pdf;
    Retrieved on: Feb. 10, 2018
  4. Monitoring the Discharge of Radioactive Substances from Research Reactors, KTA 1507 (2017-11), Nuclear Safety Standards Commission, Salzgitter, Germany, 2017.
    Retrieved from: http://www.kta-gs.de/e/standards/1500/1507_engl_2017_11.pdf;
    Retrieved on: Feb. 10, 2018
  5. Environmental and Source Monitoring for Purposes of Radiation Protection. IAEA Safety Standards series No. RS-G-1.8, IAEA, Vienna, Austria, 2005, pp. 9 – 101.
    Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1216_web.pdf;
    Retrieved on: Aug. 22, 2005
  6. Safety of Research Reactors, IAEA Safety Standards series No. SSR-3, IAEA, Vienna, Austria, 2016, pp. 5 – 108.
    Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/P1751_web.pdf;
    Retrieved on: Nov. 7, 2016
  7. D. Stankov et al., “Individual Dosimetric Control and Monitoring of the Working Environment at the Nuclear Site IRT – Sofia,” in Proc. European Medical Physics and Engineering Conference (EMPEC), Sofia, Bulgaria, 2012, pp. 354 – 359.
    Retrieved from: http://bitu.upatras.gr/index.php/books-and-conference-proceedings/;
    Retrieved on: Oct. 13, 2012
  8. A. Mladenov et al., “Possibilities of automatic radiation monitoring system in Nuclear Scientific Experimental and Educational Centre,” in Proc. 2nd Nat. Congress Phys. Sci. & 41st Nat. Conf. Phys. Education, Sofia, Bulgaria, 2013, pp. 1 – 6.
  9. A. Mladenov et al., “Radiation Monitoring Program at Nuclear Scientific Experimental and Educational Center IRT– Sofia,” in Proc. European Medical Physics and Engineering Conference (EMPEC), Sofia, Bulgaria, 2012, pp. 354 – 359.
  10. A. Mladenov, K. Krezhov, “Radon concentration measurements at the IRT-Sofia research reactor site,” Radiation & Applications, vol. 3, no. 1, pp. 52 – 58, Apr. 2018.
    DOI: 10.21175/RadJ.2018.01.010
  11. T. Nonova et al., “Radiological assessment of the IRT - Sofia site for the period January 2011 - June 2013,” in Proc. 2nd Nat. Congress Phys. Sci. & 41st Nat. Conf. Phys. Education, Sofia, Bulgaria, 2013, pp. 1 – 7.
  12. A. Mladenov, D. Stankov, T. Nonova, K. Krezhov, “Radiation protection, radioactive waste management and site monitoring at the Nuclear Scientific Experimental and Educational Centre IRT-Sofia at INRNE – BAS” Rad. Prot. Dosim., vol. 162. no. 1-2, pp. 176 – 181, Nov. 2014.
    DOI: 10.1093/rpd/ncu254
    PMid: 25071246
  13. STATISTICA for Windows, StatSoft Inc., Tulsa (OK), USA, 2013.
    Retrieved from: https:// www.statsoft.com;
    Retrieved on: May 20, 2013
  14. M. Wang et al., “The Critical Role of Potassium in Plant Stress Response”, Int. J. Mol. Sci., vol. 14, no. 4, pp. 7370 – 7390, Apr. 2013.
    DOI: 10.3390/ijms14047370
    PMid: 23549270
    PMCid: PMC3645691
  15. М. Гелев и др, Радиационен мониторинг в района на комплекса физически институти на БАН-7км за периода 1961-2008 г, Институт за ядрени изследвания и ядрена енергетика, София, България, 2009, стр. 3 – 10. (M. Guelev et al., Radiation monitoring in the area of the physical institutes complex of BAS - seventh kilometer for the period 1961 – 2008, Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria, 2009, pp. 3 – 10.)
  16. S Chibowski et al., “The examination of the Roztocze region environment. Radioisotope monitoring of soils and plants. The heavy metal content in soil,” Pol. J. Environ. Stud., vol. 6, no. 3, pp. 17 – 27, 1997.
  17. L. Ciuffo et al., “137Cs Soil-to-plant Transfer for Individual Species in a Semi-natural Grassland. Influence of Potassium Soil Content,” J. Rad. Res., vol. 44, no. 3, pp. 277 – 2830, Sep. 2003.
    DOI: 10.1269/jrr.44.277
  18. I. Yordanova et al., “Technogenic Radionuclides in Undisturbed Bulgarian Soils,” J. Geochem. Explor., vol. 142, pp. 69 – 74, Jul. 2014.
    DOI: 10.1016/j.gexplo.2014.01.011
  19. M. Zhiyanski et al., “Cs-137 distribution in forest floor and surface soil layers from two mountainous regions in Bulgaria,” J. Geochem. Explor., vol. 96, no. 2-3, pp. 256 – 266, Feb-Mar. 2008.
    DOI: 10.1016/j.gexplo.2007.04.010
  20. Р. Котова, В. Бадулин, Р. Тоцева, Ж. Тенев, Г. Иванова, “Изследване на техногенни радионуклиди в обекти от околната среда в района на АЕЦ „Козлодуй“ – 40 – години мониторинг,” в Радиоекологичен мониторинг на работната и жизнената среда, Р. Георгиева, Н. Чобанова, Т. Рангелова, ред., София, България: НЦРРЗ, 2013, стр. 7 – 22. (R. Totseva, V. Badulin, R. Kotova, Zh. Tenev, G. Ivanova, “Study of the technogenic radionuclides in environmental projects in the Kozloduy NPP region – 40 years monitoring,” in Radioecological monitoring of the working and living environment, R. Georgieva, N. Chobanova, T. Rangelova, Eds., Sofia, Bulgaria: NCRRP, 2013, pp. 7 – 22.)
    Retrieved from: http://www.ncrrp.org/new/document-1134;
    Retrieved on: Jun. 23, 2018

Topical review

Biomaterials

ANTIBACTERIAL ACTIVITY OF METALS WITH MEDICAL APPLICATION

Iva Slavova, Denitsa Kiradzhiyska, Rositsa Mancheva

Pages: 71-87

DOI: 10.21175/RadJ.2018.02.013

Received: 24 AUG 2018, Received revised: 10 DEC 2018, Accepted: 12 DEC 2018, Published online: 27 DEC 2018

The most common classification of certain biomaterials is proposed according to their nature, biological behavior, and application specificity. Data on the antibacterial activity of the metals Ag, Cu, Mg, Zn, Se, and Zr are summarized. A brief historical review of their use in the treatment of various infections has been made. The mechanisms of antibacterial action and the role of some implant surface modifications are discussed.
  1. F. J. O’Brien, “Biomaterials & scaffolds for tissue engineering,” Materials today, vol. 14, no. 3, pp. 88 – 95 , Mar. 2011.
    DOI: 10.1016/S1369-7021(11)70058-X
  2. T. Dikova, “Nano-engineered coatings on titanium implants,” Scr. Sci. Medica, vol. 44, no. 2, pp. 23 – 25, Dec. 2012.
    DOI: 10.14748/ssm.v44i2.352
  3. Y. Qin, “Textiles for implants and regenerative medicine,” in Medical Textile Materials, Cambridge, UK: Elsevier, 2016, ch. 10, sec. 10.2, pp. 133 – 135.
    DOI: 10.1016/C2014-0-04473-5
  4. M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants-a review,” Prog. Mater. Sci., vol. 54, no. 3, pp. 397 – 425, May 2009.
    DOI: 10.1016/j.pmatsci.2008.06.004
  5. J. Venkatesan, S. K. Kim, “Chitosan composites for bone tissue engineering-an overview,” Mar. Drugs, vol. 8, no. 8, pp. 2252 – 2266, Aug. 2010.
    DOI: 10.3390/md8082252
    PMid: 20948907
    PMCid: PMC2953403
  6. D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials, vol. 29, no. 20, pp. 2941 – 2953, Jul. 2008.
    DOI: 10.1016/j.biomaterials.2008.04.023
    PMid: 18440630
  7. T. M. Sridhar, S. Rajeswari, “Biomaterials corrosion,” Corros. Rev., vol. 27, no. suppl, pp. 287 – 332, Jan. 2009.
    DOI: 10.1515/corrrev.2009.27.s1.287
  8. J. Chevalier, L. Gremillard, “Ceramics for medical applications: a picture for the next 20 years,” J. Eur. Ceram. Soc., vol. 29, no. 7, pp. 1245 – 1255, Apr. 2009.
    DOI: 10.1016/j.jeurceramsoc.2008.08.025
  9. D. F. Williams, Definitions in Biomaterials: Proceedings of a Consensus Conference of the European Society for Biomaterials, Chester, UK: Elsevier, 1987.
  10. E. S. Park, Biomaterials in medical devices, Medtronic, Inc., Minneapolis (MN), USA.
    Retrieved from: http://insegnamento/175779-Scienza-E-Tecnologia-Dei-Biomateriali/56640-Medtronic;
    Retrieved on: Aug. 15, 2018
  11. J. R. Jones and L. L. Hench, “Biomedical materials for new millennium: perspective on the future,” Mater. Sci. Technol., vol. 17, no. 8, pp. 891 – 900, Jul. 2001.
    DOI: 10.1179/026708301101510762
  12. J. R. Jones, “Scaffolds for tissue engineering” in Biomaterials, artificial organs and tissue engineering, Cambridge, UK: Elsevier, 2005, ch. 4, sec. 19, 201 – 214.
    DOI: 10.1533/9781845690861.4.201
  13. L. L. Hench, “Biomaterials: a forecast for the future,” Biomaterials, vol. 19, no. 16, pp. 1419 – 1423, Aug. 1998.
    DOI: 10.1016/s0142-9612(98)00133-1
    PMid: 9794512
  14. H. Hermawan, “Biodegradable metals: state of art,” in Biodegradable Metals, Heildelberg, Germany: Springer, 2012, ch. 2, pp. 13 – 22.
    DOI: 10.1007/978-3-642-31170-3_2
  15. M. Bohner, “Resorbable biomaterials as bone graft substitutes,” Mater. Today, vol. 13, no. 1-2, pp. 24 – 30, Jan-Feb. 2010.
    DOI: 10.1016/S1369-7021(10)70014-6
  16. X. N. Gu, X. H. Xie, N. Li, Y. F. Zheng, and L. Qin, “In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal,” Acta Biomater., vol. 8, no. 6, pp. 2360 – 2374, Jul. 2012.
    DOI: 10.1016/j.actbio.2012.02.018
    PMid: 22387336
  17. P. Aramwit, “Introduction to biomaterials for wound healing,” in Wound healing biomaterials, vol. 2, M. S. Agren, Ed., Cambridge, UK: Woodhead Publishing, 2016, ch. 1, pp. 3 – 38.
    DOI: 10.1016/B978-1-78242-456-7.00001-5
  18. H. Chai et al., “Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo,” J. Mater. Sci. Mater. Med., vol. 22, no. 11, pp. 2525 – 2535, Nov. 2011.
    DOI: 10.1007/s10856-011-4427-z
    PMid: 21870079
  19. Antimicrobial resistance surveillance in Europe, Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2011, European Center for Disease Prevention and Control, Stockholm, Sweden, 2012.
    DOI: 10.2900/6551
  20. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics, WHO, Geneva, Switzerland, 2017.
    Retrieved from: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
    Retrieved on: Jul. 25, 2018
  21. K. H. Liao, K. L. Ou, H. C. Cheng, C. T. Lin, and P. W. Peng, “Effect of silver on antibacterial properties of stainless steel,” Appl. Surf. Sci., vol. 256, no. 11, pp. 3641 – 3645, Mar. 2010.
    DOI: 10.1016/j.apsusc.2010.01.001
  22. J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science, vol. 284, no. 5418, pp. 1318 – 1322, May 1999.
    DOI: 10.1126/science.284.5418.1318
    PMid: 10334980
  23. P. Stephens, “Antibiotic resistance now ‘global threat’, WHO warns,” BBC News, Apr. 30, 2014.
    Retrieved from: https://www.bbc.co.uk/news/health-27204988;
    Retrieved on: Aug. 5, 2018
  24. P. Taylor et al., “Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli,” Biofouling, vol. 26, no. 7, pp. 37 – 41, Oct. 2010.
    DOI: 10.1080/08927014.2010.527000
    PMid: 20938849
  25. M. Yoshinari, Y. Oda, T. Kato, and K. Okuda, “Influence of surface modifications to titanium on antibacterial activity in vitro,” Biomaterials, vol. 22, no. 14, pp. 1 – 2, Jul. 2001.
    DOI: 10.1016/s0142-9612(00)00392-6
    PMid: 11426884
  26. S. H. Jeong, Y. Y. Sang, and C. Y. Sung, “The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers,” J. Mater. Sci., vol. 40, no. 20, pp. 5407 – 5411, Oct. 2005.
    DOI: 10.1007/s10853-005-4339-8
  27. R. L. Davies and S. F. Etris, “The development and functions of silver in water purification and disease control,” Catal. Today, vol. 36, no. 1, pp. 107 – 114, Apr. 1997.
    DOI: 10.1016/s0920-5861(96)00203-9
  28. S. W. Wijnhoven et al., “Nano-silver-a review of available data and knowledge gaps in human and environmental risk assessment,” Nanotoxicology, vol. 3, no. 2, pp. 109 – 138, Jun. 2009.
    DOI: 10.1080/17435390902725914
  29. M. K. Rai, S. D. Deshmukh, A. P. Ingle, and A. K. Gade, “Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria,” J. Appl. Microbiol., vol. 112, no. 5, pp. 841 – 852, May 2012.
    DOI: 10.1111/j.1365-2672.2012.05253.x
    PMid: 22324439
  30. B. S. Atiyeh, M. Costagliola, S. N. Hayek, and S. A. Dibo, “Effect of silver on burn wound infection control and healing: review of the literature,” Burns, vol. 33, no. 2, pp. 139 – 148, Mar. 2007.
    DOI: 10.1016/j.burns.2006.06.010
    PMid: 17137719
  31. M. C. Fung and D. L. Bowen, “Silver products for medical indications: risk-benefit assessment,” J. Toxicol. Clin. Toxicol., vol. 34, no. 1, pp. 119 – 126, Jan. 1996.
    DOI: 10.3109/15563659609020246
    PMid: 8632503
  32. M. Rai, A. P. Ingle, and S. Medici, Biomedical Applications of Metals, Basel, Switzerland: Springer International Publishing, 2018.
    DOI: 10.1007/978-3-319-74814-6
  33. Panáček et al., “Antifungal activity of silver nanoparticles against Candida spp.,” Biomaterials, vol. 30, no. 31, pp. 6333 – 6340, Oct. 2009.
    DOI: 10.1016/j.biomaterials.2009.07.065
    PMid: 19698988
  34. A. E. Mohammed, “Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract,” Asian Pac. J. Trop. Biomed., vol. 5, no. 5, pp. 382 – 386, May 2015.
    DOI: 10.1016/S2221-1691(15)30373-7
  35. W. J. Schreurs and H. Rosenberg, “Effect of silver ions on transport and retention of phosphate by Escherichia coli,” J. Bacteriol., vol. 152, no. 1, pp. 7 – 13, Oct. 1982.
    PMid: 6749823
    PMCid: PMC221367
  36. M. Rai et al., “Nanosilver: an inorganic nanoparticle with myriad potential applications,” Nanotechnol. Rev., vol. 3, no. 3, pp. 281 – 309, Apr. 2014.
    DOI: 10.1515/ntrev-2014-0001
  37. A. B. Lansdown, “Silver I: its antibacterial properties and mechanism of action,” J. Wound Care, vol. 11, no. 4, pp. 125 – 130, Apr. 2002.
    DOI: 10.12968/jowc.2002.11.4.26389
    PMid: 11998592
  38. Y. Yakabe, T. Sano, H. Ushio, and T. Yasunaga, “Kinetic studies of the interaction between silver ion and deoxyribonucleic acid,” Chem. Lett., vol. 9, no. 4, pp. 373 – 376, Apr. 1980.
    DOI: 10.1246/cl.1980.373
  39. G. A. Fielding, M. Roy, A. Bandyopadhyay, S. Bose, “Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings,” Acta Biomater., vol. 8, no. 8, pp. 3144 – 3152, Aug. 2012.
    DOI: 10.1016/j.actbio.2012.04.004
    PMid: 22487928
    PMCid: PMC3393112
  40. G. V. Vimbela, S. M. Ngo, C. Fraze, L. Yang, D. A. Stout, “Antibacterial properties and toxicity from metallic nanomaterials,” Int. J. Nanomedicine, vol. 12, pp. 3941 – 3965, May 2017.
    DOI: 10.2147/IJN.S134526
    PMid: 28579779
    PMCid: PMC5449158
  41. W. Zhang, Y. Li, J. Niu, Y. Chen, “Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects,” Langmuir, vol. 29, no. 15, pp. 4647 – 4651, Apr. 2013.
    DOI: 10.1021/la400500t
    PMid: 23544954
  42. R. B. K. Wakshlak, R. Pedahzur, D. Avnir, “Antibacterial activity of silver-killed bacteria: the" zombies" effect,” Scientific reports, vol. 5, no. 9555, Apr. 2015.
    DOI: 10.1038/srep09555
    PMid: 25906433
    PMCid: PMC5386105
  43. K. Das, S. Bose, A. Bandyopadhyay, B. Karandikar. B. L. Gibbins, “Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants,” J. Biomed. Mater. Res. Part B Appl. Biomater., vol. 87, no. 2, pp. 455 – 460, Nov. 2008.
    DOI: 10.1002/jbm.b.31125
    PMid: 18481793
  44. R. Mittal, S. Aggarwal, S. Sharma, S. Chhibber, K. Harjai, “Urinary tract infections caused by Pseudomonas aeruginosa: a minireview,” J. Infect. Public Health, vol. 2, no. 3, pp. 101 – 111, 2009.
    DOI: 10.1016/j.jiph.2009.08.003
    PMid: 20701869
  45. K. G. Kerr, A. M. Snelling, “Pseudomonas aeruginosa: a formidable and ever-present adversary,” J. Hosp. Infect., vol. 73, no. 4, pp. 338 – 344, Dec. 2009.
    DOI: 10.1016/j.jhin.2009.04.020
    PMid: 19699552
  46. B. Le Ouay and F. Stellacci, “Antibacterial activity of silver nanoparticles: a surface science insight,” Nano Today, vol. 10, no. 3, pp. 339 – 354, Jun. 2015.
    DOI: 10.1016/j.nantod.2015.04.002
  47. R. Salomoni, P. Léo, A. F. Montemor, B. G. Rinaldi, M. F. A. Rodrigues, “Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa,” Nanotechnol. Sci. Appl., vol. 10, pp. 115 – 121, Jun. 2017.
    DOI: 10.2147/NSA.S133415
    PMid: 28721025
    PMCid: PMC5499936
  48. G. A. Martinez-Castanon, N. Nino-Martinez, F. Martinez-Gutierrez, J. R. Martinez-Mendoza, F. Ruiz, “Synthesis and antibacterial activity of silver nanoparticles with different sizes,” J. Nanoparticle Res., vol. 10, no. 8, pp. 1343 – 1348, Jul. 2008.
    DOI: 10.1007/s11051-008-9428-6
  49. J. Nasrin Begam, “Biosynthesis and characterization of silver nanoparticles (AgNPs) using marine bacteria against certain human pathogens,” International Journal of Advances in Scientific Research, vol. 16, no. 10, pp. 2346 – 2353, Aug. 2016.
    DOI: 10.7439/ijasr.v2i7.3514
  50. M. R. Nateghi, H. Hajimirzababa, “Effect of silver nanoparticles morphologies on antimicrobial properties of cotton fabrics,” J. Text. Inst., vol. 105, no. 8, pp. 806 – 813, Jan. 2014.
    DOI: 10.1080/00405000.2013.855377
  51. I. Sondi and B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria,” J. Colloid Interface Sci., vol. 275, no. 1, pp. 177 – 182, Jul. 2004.
    DOI: 10.1016/j.jcis.2004.02.012
    PMid: 15158396
  52. J. S. Kim et al., “Antimicrobial effects of silver nanoparticles,” Nanomedicine Nanotechnology, Biol. Med., vol. 3, no. 1, pp. 95 – 101, Mar. 2007.
    DOI: 10.1016/j.nano.2006.12.001
    PMid: 17379174
  53. J. Thiel et al., “Antibacterial properties of silver-doped titania,” Small, vol. 3, no. 5, pp. 799 – 803, May 2007.
    DOI: 10.1002/smll.200600481
    PMid: 17340662
  54. G. Hu et al., “Antibacterial activity of silver nanoparticles with different morphologies as well as their possible antibacterial mechanism,” Appl. Phys. A, vol. 122, no. 10, pp. 874 – 880, Sep. 2016.
    DOI: 10.1007/s00339-016-0395-y
  55. S. Shrivastava et al., “Characterization of enhanced antibacterial effects of novel silver nanoparticles,” Nanotechnology, vol. 18, no. 22, p. 225103, May 2007.
    DOI: 10.1088/0957-4484/18/22/225103
  56. H. H. Lara, N. V. Ayala-Núñez, L. D. C. I. Turrent, C. R. Padilla, “Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria,” World J. Microbiol. Biotechnol., vol. 26, no. 4, pp. 615 – 621, Oct. 2010.
    DOI: 10.1007/s11274-009-0211-3
  57. J. J. Buckley, A. F. Lee, and K. Wilson, “Hydroxyapatite supported antibacterial Ag3PO4 nanoparticles,” J. Mater. Chem., vol. 20, no. 37, pp. 8056 – 8063, Oct. 2010.
    DOI: 10.1039/c0jm01500h
  58. S. Sohrabnezhad, A. Pourahmad, M. J. M. Moghaddam, A. Sadeghi, “Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 136, pp. 1728-1733, Feb. 2015.
    DOI: 10.1016/j.saa.2014.10.074
    PMid: 25467663
  59. J. J. Buckley, P. L. Gai, A. F. Lee, L. Olivi, K. Wilson, “Silver carbonate nanoparticles stabilised over alumina nanoneedles exhibiting potent antibacterial properties,” Chem. Commun., vol. 34, pp. 4013 – 4015, Sep. 2008.
    DOI: 10.1039/b809086f
    PMid: 18758610
  60. A. Besinis, T. De Peralta, R. D. Handy, “The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays,” Nanotoxicology, vol. 8, no. 1, pp. 1 – 16, Feb. 2014.
    DOI: 10.3109/17435390.2012.742935
    PMid: 23092443
    PMCid: PMC3878355
  61. J. Liu et al., “The antibacterial properties and biocompatibility of a Ti-Cu sintered alloy for biomedical application,” Biomed. Mater., vol. 9, no. 2, p. 025013, Apr. 2014.
    DOI: 10.1088/1748-6041/9/2/025013
    PMid: 24565798
  62. S. Kittler, C. Greulich, J. Diendorf, M. Koller, M. Epple, “Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions,” Chem. Mater., vol. 22, no. 16, pp. 4548 – 4554, Aug. 2010.
    DOI: 10.1021/cm100023p
  63. S. Chernousova, M. Epple, “Silver as antibacterial agent: ion, nanoparticle, and metal,” Angew. Chemie Int. Ed., vol. 52, no. 6, pp. 1636 – 1653, Feb. 2013.
    DOI: 10.1002/anie.201205923
    PMid: 23255416
  64. A. R. Gliga, S. Skoglund, I. O. Wallinder, B. Fadeel, H. L. Karlsson, “Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release,” Part. Fibre Toxicol., vol. 11, no. 1, pp. 1 – 17, Feb. 2014.
    DOI: 10.1186/1743-8977-11-11
    PMid: 24529161
    PMCid: PMC3933429
  65. L. Li et al., “Controllable synthesis of monodispersed silver nanoparticles as standards for quantitative assessment of their cytotoxicity,” Biomaterials, vol. 33, no. 6, pp. 1714 – 1721, Feb. 2012.
    DOI: 10.1016/j.biomaterials.2011.11.030
    PMid: 22137123
  66. A. R. Shahverdi, A. Fakhimi, H. R. Shahverdi, S. Minaian, “Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli,” Nanomed.: Nanotechnol., Biol. Med., vol. 3, no. 2, pp. 168 – 171, Jun. 2007.
    DOI: 10.1016/j.nano.2007.02.001
    PMid: 17468052
  67. V. Dhand et al., “Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity,” Mater. Sci. Eng. C, vol. 58, pp. 36 – 43, Jan. 2016.
    DOI: 10.1016/j.msec.2015.08.018
    PMid: 26478284
  68. F. K. Alsammarraie, W. Wang, P. Zhou, A. Mustapha, and M. Lin, “Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities,” Colloids. Surf. B. Biointerfaces., vol. 171, pp. 398 – 405, Nov. 2018.
    DOI: 10.1016/j.colsurfb.2018.07.059
    PMid: 30071481
  69. S. Husain, M. Sardar, and T. Fatma, “Screening of cyanobacterial extracts for synthesis of silver nanoparticles,” World J. Microbiol. Biotechnol., vol. 31, no. 8, pp. 1279 – 1283, May 2015.
    DOI: 10.1007/s11274-015-1869-3
  70. M. Ghaedi, M. Yousefinejad, M. Safarpoor, H. Z. Khafri, M. K. Purkait, “Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties,” J. Ind. Eng. Chem., vol. 31, pp. 167 – 172, Nov. 2015.
    DOI: 10.1016/j.jiec.2015.06.020
  71. M. Soltanzadeh, M. Soltani Nejad, and G. H. S. Bonjar, “Application of Soil‐borne Actinomycetes for Biological Control against Fusarium Wilt of Chickpea (Cicer arietinum) caused by Fusarium solani fsp pisi,” J. Phytopath., vol. 164, no. 3, pp. 967–978, Oct. 2016.
    DOI: 10.1111/jph.12517
  72. A. K. Mittal, Y. Chisti, U. C. Banerjee, “Synthesis of metallic nanoparticles using plant extracts,” Biotechnol. Adv., vol. 31, no. 2, pp. 346 – 356, Mar-Apr. 2013.
    DOI: 10.1016/j.biotechadv.2013.01.003
    PMid: 23318667
  73. B. Sadeghi, F. Gholamhoseinpoor, “A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature,” Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 134, pp. 310 – 315, Jan. 2015.
    DOI: 10.1016/j.saa.2014.06.046
    PMid: 25022503
  74. P. R. Sre, M. Reka, R. Poovazhagi, M. A. Kumar, and K. Murugesan, “Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam,” Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 135, pp. 1137 – 1144, Jan. 2015.
    DOI: 10.1016/j.saa.2014.08.019
    PMid: 25189525
  75. P. Sanguiñedo et al., “Extracellular biosynthesis of Silver nanoparticles using fungi and their antibacterial activity,” Nano Biomed. Eng., vol. 10, no. 2, pp. 165 – 173, Jun. 2018.
    DOI: 10.5101/nbe.v10i2.p165-173
  76. E. Cremonini et al., “Biogenic selenium nanoparticles synthesized by Stenotrophomonas maltophilia Se ITE 02 loose antibacterial and antibiofilm efficacy as a result of the progressive alteration of their organic coating layer,” Microb. Biotechnol., vol. 11, no. 6, pp. 1037 – 1047, Apr. 2018.
    DOI: 10.1111/1751-7915.13260
    PMid: 29635772
    PMCid: PMC6196382
  77. P. Golinska et al., “Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity,” Appl. Microbiol. Biotechnol., vol. 98, no. 19, pp. 8083 – 8097, Oct. 2014.
    DOI: 10.1007/s00253-014-5953-7
    PMid: 25158833
  78. P. Kuppusamy, M. M. Yusoff, G. P. Maniam, N. Govindan, “Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report,” Saudi Pharmaceutical Journal, vol. 24, no. 4, pp. 473 – 484, Jul. 2016.
    DOI: 10.1016/j.jsps.2014.11.013
  79. E. Abbasi et al., “Silver nanoparticles: synthesis methods, bio-applications and properties,” Crit. Rev. Microbiol., vol. 42, no. 2, pp. 173 – 180, 2016.
    DOI: 10.3109/1040841X.2014.912200
  80. S. Ahmed, M. Ahmad, B. L. Swami, S. Ikram, “Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract,” J. Radiat. Res. Appl. Sci., vol. 9, no. 1, pp. 1 – 7, Jan. 2016.
    DOI: 10.1016/j.jrras.2015.06.006
  81. H. M. Ibrahim, “Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms,” J. Radiat. Res. Appl. Sci., vol. 8, no. 3, pp. 265 – 275, Jul. 2015.
    DOI: 10.1016/j.jrras.2015.01.007
  82. G. Benelli, “Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review,” Enzyme Microb. Technol., vol. 95, pp. 58 – 68, Dec. 2016.
    DOI: 10.1016/j.enzmictec.2016.08.022
    PMid: 27866627
  83. F. F. Soleimani, T. Saleh, S. A. Shojaosadati, R. Poursalehi, “Green synthesis of different shapes of Silver nanostructures and evaluation of their antibacterial and cytotoxic activity,” BioNanoSci., vol. 8, no. 1, pp. 72 – 80, Jul. 2017.
    DOI: 10.1007/s12668-017-0423-1
  84. H. T. Michels, S. A. Wilks, J. O. Noyce, and C. W. Keevil, “Copper alloys for human infectious disease control,” in Proc. Materials Science and Technology Conference (MS&T__05), Pittsburgh (PA), 2005, pp. 1546 – 2498.
    Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.559.9650&rep=rep1&type=pdf;
    Retrieved on: Aug. 15, 2018
  85. M. Raffi et al., “Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli,” Ann. Microbiol., vol. 60, no. 1, pp. 75 – 80, Feb. 2010.
    DOI: 10.1007/s13213-010-0015-6
  86. G. Faúndez, M. Troncoso, P. Navarrete, G. Figueroa, “Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni,” BMC Microbiol., vol. 4, no. 1, p. 19, Apr. 2004.
    DOI: 10.1186/1471-2180-4-19
    PMid: 15119960
    PMCid: PMC411034
  87. P. A. Tran, T. J. Webster, “Selenium nanoparticles inhibit Staphylococcus aureus growth,” Int. J. Nanomedicine, vol. 6, pp. 1553 – 1558, Jul. 2011.
    DOI: 10.2147/IJN.S21729
    PMid: 21845045
    PMCid: PMC3152473
  88. S. Mehtar, I. Wiid, S. D. Todorov, “The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study,” J. Hosp. Infect., vol. 68, no. 1, pp. 45 – 51, Jan. 2008.
    DOI: 10.1016/j.jhin.2007.10.009
    PMid: 18069086
  89. B. L. Meatherall, D. Gregson, T. Ross, J. D. Pitout, and K. B. Laupland, “Incidence, risk factors, and outcomes of Klebsiella pneumoniae bacteremia,” Am. J. Med., vol. 122, no. 9, pp. 866 – 873, Sep. 2009.
    DOI: 10.1016/j.amjmed.2009.03.034
    PMid: 19699383
  90. S. S. Magill et al., “Multistate point-prevalence survey of health care–associated infections,” N. Engl. J. Med., vol. 370, no. 13, pp. 1198 – 1208, Mar. 2014.
    DOI: 10.1056/NEJMoa1306801
    PMid: 24670166
    PMCid: PMC4648343
  91. K. Hirukawa et al., “Effect of tensile force on the expression of IGF-I and IGF-I receptor in the organ-cultured rat cranial suture,” Arch. Oral Biol., vol. 50, no. 3, pp. 367 – 372, Mar. 2005.
    DOI: 10.1016/j.archoralbio.2004.07.003
    PMid: 15740717
  92. L. Zhu, J. Elguindi, C. Rensing, S. Ravishankar, “Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica,” Food Microbiol., vol. 30, no. 1, pp. 303 – 310, May 2012.
    DOI:10.1016/j.fm.2011.12.001
    PMid: 22265316
  93. Y. Z. Wan et al., “Modification of medical metals by ion implantation of copper,” Appl. Surf. Sci., vol. 253, no. 24, pp. 9426 – 9429, Oct. 2007.
    DOI: 10.1016/j.apsusc.2007.06.031
  94. J. Liu et al., “Effect of Cu content on the antibacterial activity of titanium - copper sintered alloys,” Mater. Sci. Eng. C, vol. 35, pp. 392 – 400, Feb. 2014.
    DOI: 10.1016/j.msec.2013.11.028
    PMid: 24411393
  95. M. I. Baena, M. C. Mµrquez, V. Matres, J. Botella, A. Ventosa, “Bactericidal activity of copper and niobium – alloyed austenitic stainless steel,” Curr. Microbiol., vol. 53, no. 6, pp. 491 – 495, Dec. 2006.
    DOI: 10.1007/s00284-006-0193-4
    PMid: 17072670
  96. Y. Huang et al., “Antibacterial efficacy, corrosion resistance, and cytotoxicity studies of copper-substituted carbonated hydroxyapatite coating on titanium substrate,” J. Mater. Sci., vol. 50, no. 4, pp. 1688 – 1700, Nov. 2015.
    DOI: 10.1007/s10853-014-8730-1
  97. W. Chen et al., “In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating,” Biomaterials, vol. 27, no. 32, pp. 5512 – 5517, Nov. 2006.
    DOI: 10.1016/j.biomaterials.2006.07.003
    PMid: 16872671
  98. Y. Li, J. Ho, C. P. Ooi, “Antibacterial efficacy and cytotoxicity studies of copper (II) and titanium (IV) substituted hydroxyapatite nanoparticles,” Mater. Sci. Eng. C, vol. 30, no. 8, pp. 1137 – 1144, Oct. 2010.
    DOI: 10.1016/j.msec.2010.06.011
  99. J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, S. Mukherji, “Strain specificity in antimicrobial activity of silver and copper nanoparticles,” Acta Biomater., vol. 4, no. 3, pp. 707 – 716, May 2008.
    DOI: 10.1016/j.actbio.2007.11.006
    PMid: 18248860
  100. T. J. Beveridge, R. G. Murray, “Sites of metal deposition in the cell wall of Bacillus subtilis,” J. Bacteriol., vol. 141, no. 2, pp. 876 – 887, Feb. 1980.
    PMid: 6767692
    PMCid: PMC293699
  101. D. Das, B. C. Nath, P. Phukon, S. K. Dolui, “Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles,” Colloids Surfaces B Biointerfaces, vol. 101, pp. 430 – 433, Jan. 2013.
    DOI: 10.1016/j.colsurfb.2012.07.002
    PMid: 23010051
  102. G. D. M. R. Dabera et al.,”Retarding oxidation of copper nanoparticles without electrical isolation and the size dependence of work function,” Nat. Commun., vol. 8, no. 1, p. 1894, Dec. 2017.
    DOI: 10.1038/s41467-017-01735-6
    PMid: 29196617
    PMCid: PMC5711799
  103. U. Gröber, J. Schmidt, and K. Kisters, “Magnesium in prevention and therapy,” Nutrients, vol. 7, no. 9, pp. 8199 – 8226, Sep. 2015.
    DOI: 10.3390/nu7095388
    PMid: 26404370
    PMCid: PMC4586582
  104. L. Ren, X. Lin, L. Tan, and K. Yang, “Effect of surface coating on antibacterial behavior of magnesium based metals,” Mater. Lett., vol. 65, no. 23-24, pp. 3509 – 3511, Dec. 2011.
    DOI: 10.1016/j.matlet.2011.07.109
  105. D. A. Robinson, R. W. Griffith, D. Shechtman, R. B. Evans, M. G. Conzemius, “In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus,” Acta Biomater., vol. 6, no. 5, pp. 1869 – 1877, May 2010.
    DOI: 10.1016/j.actbio.2009.10.007
    PMid: 19818422
  106. J. Y. Lock et al., “Antimicrobial properties of biodegradable magnesium for next generation ureteral stent applications”, in Proc. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012 (EMBC), San Diego, CA, USA, 2012 pp. 1378 – 1381.
    DOI: 10.1109/EMBC.2012.6346195
    PMid: 23366156
  107. M. Pourbaix, “Atlas of electrochemical equilibria in aqueous solutions”, 2nd English Ed., Houston, Tex., USA: National Association of Corrosion Engineers, 1974.
  108. M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: a review,” Biomaterials, vol. 27, no. 9, pp. 1728 – 1734, Mar. 2006.
    DOI: 10.1016/j.biomaterials.2005.10.003
    PMid: 16246414
  109. G. He et al., “Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial property,” J. Mater. Chem. B, vol. 3, no. 32, pp. 6676 – 6689, Aug. 2015.
    DOI: 10.1039/C5TB01319D
    PMid: 26693010
    PMCid: PMC4675164
  110. A. H. Martinez Sanchez, B. J. C. Luthringer, F. Feyerabend, R. Willumeit, “Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates ? - A Review,” ACTA Biomater., vol. 13, pp. 16 – 31, Feb. 2015.
    DOI: 10.1016/j.actbio.2014.11.048
    PMid: 25484334
  111. D. Williams, “New interests in magnesium,” Med. Device Technol., vol. 17, no. 3, pp. 9 – 10, Apr. 2006.
    PMid: 16736656
  112. Y. Li et al., “Antibacterial properties of magnesium in vitro and in an in vivo model of implant-associated methicillin-resistant Staphylococcus aureus infection,” Antimicrob. Agents Chemother., vol. 58, no. 12, pp. 7586 – 7591, Dec. 2014.
    DOI: 10.1128/AAC.03936-14
    PMid: 25288077
    PMCid: PMC4249557
  113. N. S. Morris, D. J. Stickler, and R. J. C. Mclean, “The development of bacterial biofilms on indwelling urethral catheters,” World J. Urol., vol. 17, no. 6, pp. 345 – 350, Dec. 1999.
    DOI: 10.1007/s003450050159
    PMid: 10654364
  114. P. Hou et al., “Reduced antibacterial property of metallic magnesium in vivo,” Biomed. Mater., vol. 12, no. 1, p. 015010, Dec. 2016.
    DOI: 10.1088/1748-605X/12/1/015010
    PMid: 27934788
  115. P. L. Miller, B. A. Shaw, R. G. Wendt, W. C. Moshier, “Assessing the corrosion resistance of nonequilibrium magnesium-yttrium alloys,” Corrosion, vol. 51, no. 12, pp. 922 – 931, Dec. 1995.
    DOI: 10.5006/1.3293568
  116. A. Feng, Y. Han, “The microstructure, mechanical and corrosion properties of calcium polyphosphate reinforced ZK60A magnesium alloy composites,” J. Alloys Compd., vol. 504, no. 2, pp. 585 – 593, Aug. 2010.
    DOI: 10.1016/j.jallcom.2010.06.013
  117. L. Li, J. Gao, Y. Wang, “Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid,” Surf. Coatings Technol., vol. 185, no. 1, pp. 92 – 98, Jul. 2004.
    DOI: 10.1016/j.surfcoat.2004.01.004
  118. A. S. Prasad, “Zinc: an overview,” Nutrition, vol. 11, no. 1, pp. 93 – 99, Jan-Feb. 1995.
    PMid: 7749260
  119. M. Valko, H. Morris, M. T. D. Cronin, “Metals, Toxicity and Oxidative Stress,” Curr. Med. Chem., vol. 12, no. 10, pp. 1161 – 1208, May 2005.
    DOI: 10.2174/0929867053764635
    PMid: 15892631
  120. J. S. van der Hoeven, D. Cummins, M. J. M. Schaeken, and F. J. G. van der Ouderaa, “The effect of chlorhexidine and zinc/triclosan mouthrinses on the production of acids in dental plaque,” Caries Res., vol. 27, no. 4, pp. 298-302, 1993.
    DOI: 10.1159/000261554
    PMid: 8402805
  121. M. Burguera-Pascu, A. Rodríguez-Archilla, P. Baca, “Substantivity of zinc salts used as rinsing solutions and their effect on the inhibition of Streptococcus mutans,” J. Trace Elem. Med. Biol., vol. 21, no. 2, pp. 92-101, Jun. 2007.
    DOI: 10.1016/j.jtemb.2006.12.003
    PMid: 17499148
  122. H. Hu et al., “Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium,” Acta Biomater., vol. 8, no. 2, pp. 904 – 915, Feb. 2012.
    DOI: 10.1016/j.actbio.2011.09.031
    PMid: 22023752
  123. B. H. Zhao et al., “Effect of Zn content on cytoactivity and bacteriostasis of micro-arc oxidation coatings on pure titanium,” Surf. Coatings Technol., vol. 228, pp. 428 – 432, Aug. 2013.
    DOI: 10.1016/j.surfcoat.2012.05.037
  124. H. J. Seo, Y. E. Cho, T. Kim, H. I. Shin, I. S. Kwun, “Zinc may increase bone formation through stimulating cell proliferation , alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells,” Nutr. Res. Pract., vol. 4, no. 5, pp. 356 – 361, Oct. 2010.
    DOI: 10.4162/nrp.2010.4.5.356
    PMid: 21103080
    PMCid: PMC2981717
  125. H. Kawamura et al., “Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora,” J. Biomed. Mater. Res. Part A, vol. 50, no. 2, pp. 184 – 190, May 2000.
    DOI: 10.1002/(sici)1097-4636(200005)50:2<184::aid-jbm13>3.0.co;2-3
    PMid: 10679683
  126. Y. Reyes-Vidal et al., “Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings,” Appl. Surf. Sci., vol. 342, pp. 34 – 41, Jul. 2015.
    DOI: 10.1016/j.apsusc.2015.03.037
  127. K. P. Tank, K. S. Chudasama, V. S. Thaker, M. J. Joshi, “Pure and zinc doped nano-hydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies,” J. Cryst. Growth, vol. 401, pp. 474 – 479, Sep. 2014.
    DOI: 10.1016/j.jcrysgro.2014.01.062
  128. N. Iqbal et al., “Characterization, antibacterial and in vitro compatibility of zinc–silver doped hydroxyapatite nanoparticles prepared through microwave synthesis,” Ceram. Int., vol. 40, no. 3, pp. 4507 – 4513, Apr. 2014.
    DOI: 10.1016/j.ceramint.2013.08.125
  129. Y. Huang et al., “Osteoblastic cell responses and antibacterial efficacy of Cu/Zn co-substituted hydroxyapatite coatings on pure titanium using electrodeposition method,” RSC Adv., vol. 5, no. 22, pp. 17076 – 17086, Feb. 2015.
    DOI: 10.1039/c4ra12118j
  130. S. Kurokawa, M. J. Berry, “Selenium. Role of essential metalloid in health,” in Interrelations between Essentials Metal Ions and Human Diseases, vol. 13, Dordrecht, Netherlands: Springer, 2013, pp. 499 – 534.
    DOI: 10.1007/978-94-007-7500-8_16
    PMid: 24470102
    PMCid: PMC4339817
  131. C. D. Davis, P. A. Tsuji, and J. A. Milner, “Selenoproteins and cancer prevention,” Annu. Rev. Nutr., vol. 32, pp. 73 – 95, Aug. 2012.
    DOI: 10.1146/annurev-nutr-071811-150740
    PMid: 22404120
  132. K. Schwarz and C. M. Foltz, “Selenium as an integral part of factor 3 against dietary necrotic liver degeneration,” J. Am. Chem. Soc., vol. 79, no. 12, pp. 3292 – 3293, Jun. 1957.
    DOI: 10.1021/ja01569a087
  133. M. Navarro-Alarcon and C. Cabrera-Vique, “Selenium in food and the human body: a review,” Sci. Total Environ., vol. 400, no. 1-3, pp. 115 – 141, Aug. 2008.
    DOI: 10.1016/j.scitotenv.2008.06.024
    PMid: 18657851
  134. C. Rodríguez-Valencia et al., “Novel selenium-doped hydroxyapatite coatings for biomedical applications,” J. Biomed. Mater. Res. Part A, vol. 101, no. 3, pp. 853 – 861, Mar. 2013.
    DOI: 10.1002/jbm.a.34387
    PMid: 22968925
  135. J. Lubinski et al., “Serum selenium levels predict survival after breast cancer,” Breast Cancer Res. Treat., vol. 167, no. 2, pp. 591 – 598, Jan. 2018.
    DOI:10.1007/s10549-017-4525-9
    PMid: 29043463
  136. P. D. Whanger, “Selenium and its relationship to cancer: an update,” Br. J. Nutr., vol. 91, no. 1, pp. 11 – 28, Jan. 2004.
    DOI: 10.1079/bjn20031015
    PMid: 14748935
  137. G. F. Combs, “Selenium in global food systems,” Br. J. Nutr., vol. 85, no. 5, pp. 517 – 547, May 2001.
    DOI: 10.1079/bjn2000280
    PMid: 11348568
  138. C. D. Thomson, “SELENIUM | Physiology,” in Encyclopedia of Food Sciences and Nutrition, B. Caballero, L. C. Trugo, P. M. Finglas, Eds., 2th ed., London, UK: Academic Press, 2003, pp. 5117 – 5124.
    DOI: 10.1016/B0-12-227055-X/01061-0
  139. M. C. Ledesma et al., “Selenium and Vitamin E for prostate cancer: post-SELECT (Selenium and Vitamin E Cancer Prevention Trial) status,” Mol. Med., vol. 7, no. 1-2, pp. 134 – 143, Jan-Feb. 2011.
    DOI: 10.2119/molmed.2010.00136
    PMid: 20882260
    PMCid: PMC3022975
  140. Environmental health criteria 58: selenium, International programme on chemical safety, WHO, Geneva, Switzerland, 1987.
    Retrieved from: http://www.inchem.org/documents/ehc/ehc/ehc58.html
    Retrieved on: Jul. 18, 2018
  141. G. Q. Yang, S. Z. Wang, R. H. Zhou, S. Z. Sun, “Endemic selenium intoxication of humans in China,” Am. J. Clin. Nutr., vol. 37, no. 5, pp. 872 – 881, May 1983.
    DOI: 10.1093/ajcn/37.5.872
    PMid: 6846228
  142. E. Kheradmand et al., “The antimicrobial effects of selenium nanoparticle-enriched probiotics and their fermented broth against Candida albicans,” DARU J. Pharm. Sci., vol. 22, no. 1, pp. 1 – 6, Jun. 2014.
    DOI: 10.1186/2008-2231-22-48
    PMid: 24906455
    PMCid: PMC4060857
  143. Q. Wang, T. J. Webster, “Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices,” J. Biomed. Mater. Res. Part A, vol. 100, no. 12, pp. 3205 – 3210, Dec. 2012.
    DOI: 10.1002/jbm.a.34262
    PMid: 22707390
  144. J. Holinka, M. Pilz, B. Kubista, E. Presterl, R. Windhager, “Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth,” Bone Jt. J, vol. 95, no. 5, pp. 678 – 682, May 2013.
    DOI:10.1302/0301-620X.95B5.31216
    PMid: 23632681
  145. S. Pilathadka, D. Vahalová, T. Vosáhlo, “The Zirconia: a new dental ceramic material. An Overview,” Prague Med Rep, vol. 108, no. 1, pp. 5 – 12, 2007.
    PMid: 17682722
  146. S. B. Farina, A. G. Sanchez, S. Ceré, “Effect of surface modification on the corrosion resistance of Zr-2.5Nb as material for permanent implants,” Procedia Mater. Sci., vol. 8, pp. 1166 – 1173, 2015.
    DOI: 10.1016/j.mspro.2015.04.181
  147. T. Vagkopoulou, S. O. Koutayas, P. Koidis, “Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic,” Eur. J. Esthet. Dent.

Short note

Radiochemistry

DETERMINATION OF CARBON-14 AND TRITIUM IN IRRADIATED REACTOR GRAPHITE

Iurii Simirskii, Alexey Stepanov, Ilia Semin, Anatoly Volkovich

Pages: 88-90

DOI: 10.21175/RadJ.2018.02.014

Received: 17 MAY 2018, Received revised: 19 OCT 2018, Accepted: 18 NOV 2018, Published online: 27 DEC 2018

In order to determine 14C in irradiated graphite, a method based on the oxidation of the graphite in the oxygen flow was used. This method makes it possible to visually monitor the end of the process and simultaneously separate 14C from 137Cs and 90Sr, which interfere with its determination. This method was used to analyze irradiated graphite samples from the research reactor RFT (NRC Kurchatov Institute) and the RBMK Leningrad nuclear power plant. The concentrations of 14C and 3H in the irradiated graphite of the reactor RFT were insignificant, except for those in the active zone. In this zone, the concentrations of 14C and 3H increased by more than two orders of magnitude up to 107 Bq/kg that corresponded to their activation nature. 137Cs and 90Sr are the main radionuclides contaminating the RFT reactor irradiated graphite that reveals their crash origin. In the RBMK Leningrad nuclear power plant, irradiated graphite was mainly contaminated with 14C, although fission products 137Cs and 90Sr also make a significant contribution.
  1. Iu. Simirskii, A. Stepanov, I. Semin, A. Volkovich, “Reactor RFT Graphite Stack Spectrometric Investigation,” in Proc. Int. Conf. Nuclear Fuel Cycle (GLOBAL 2017), Seoul, South Korea,2017, А-042.
  2. A. V. Stepanov, Yu. N. Simirskii, I. A. Semin, A. G. Volkovich, “Comprehensive Radiometric Investigation of MR Reactor Pool Water,”Atom. Energy vol. 117, no. 1, pp. 57 – 61, Nov. 2014.
    DOI: 10.1007/s10512-014-9888-y

Original research papers

Radiochemistry

APPLICATION OF MICROWAVE RADIATION FOR THE DECOMPOSITION OF URANYL NITRATE IN THE SILICA GEL MATRIX

S. A. Kulyukhin, V. V. Kulemin, V. B. Krapukhin, E.P. Krasavina, V.P. Gorbacheva, I.A. Rumer

Pages: 91-97

DOI: 10.21175/RadJ.2018.02.015

Received: 25 MAY 2018, Received revised: 15 NOV 2018, Accepted: 18 NOV 2018, Published online: 27 DEC 2018

The decomposition of uranyl nitrate in a matrix of large coarse-granular silica gel (KSKG trademark) under the action of microwave radiation (MWR) was studied. Microwave irradiation leads not only to the formation of solid decomposition products UO3, UO2(OH)NO3, and their hydrates in the pores of KSKG granules, but also to the accumulation of gaseous NOx and H2O. The presence of NOx in KSKG pores leads to the HNO3 formation in the course of washing of sorbent granules with water. This prevents hydrolysis of uranyl nitrate and the formation of UO2(OH)2·H2O in KSKG pores. The washout of uranium with water and HClO4 solutions from the KSKG fraction containing the products of the decomposition of 2 and 10 g of the initial UO2(NO3)2·6H2O under the action of MWR (hereinafter denoted as KSKG-P-I) was studied. Upon the ~7-day contact of the solid and liquid phases at the total ratio S : L = 1 : 20, from 5 to 14% of U passed into the aqueous phase from KSKG-P-I samples obtained in experiments with 10 and 2 g of UO2(NO3)2·6H2O, respectively. In the course of repeated treatments of KSKG-P-I with water, pH of the wash water increased from 3 to 6, owing to the removal of NOх from KSKG pores. Then an insoluble phase of uranyl hydroxide UO2(OH)2·H2O, which can also be presented as hydroxylated uranium trioxide UO3·2H2O, was being gradually formed from the solution obtained by the treatment of KSKG-P-I with water. On treatment of KSKG-P-I with HClO4 solutions (pH 1–2), virtually all uranium species formed by MWR treatment of aqueous uranyl nitrate solutions in the KSKG matrix dissolved (at the contact time of the solid and liquid phases of ~21 days, the amount of U that passed into HClO4 solutions is ~90%). The amount of the U form that is not extracted with HClO4 solutions and remains in KSKG granules is ~12% of its initial amount. The X-ray phase analysis suggests that the uranium species remaining in KSKG are silicate compounds formed by sorbent saturation with a uranyl nitrate solution and the subsequent MWR treatment.
  1. Advances in Technologies for the Treatment of Low and Intermediate Level Radioactive Liquid Wastes, IAEA Technical Report Series No. 370, IAEA, Vienna, Austria, 1994.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/26/038/26038193.pdf;
    Retrieved on: May 25, 2018
  2. П. П. Полуэктов, Л. П. Суханов, Ю. И. Матюшин, “Научные подходы и технические решения в области обращения с жидкими высокоактивными отходами,” Российский химический журнал, т. 49, но. 4, стр. 29 – 42, 2005. (P. P. Poluektov, L. P. Sukhanov, Yu. I. Matyushin, “Scientific approaches and technical solutions in area of handling the liquid highly active wastes,” Ross. Khim. Zh., vol. 49, no. 4, pp. 29 – 42, 2005.)
    Retrieved from: http://www.chem.msu.su/rus/jvho/2005-4/29.pdf;
    Retrieved on: Aug. 17, 2018
  3. Э. Е. Коновалов, О. В. Старков, М. П. Мышковский, Л. С. Гудков, А. К. Нардова, “Иммобилизация цезия и стронция, фиксированных на силикагеле, в минералоподобные матрицы в режиме СВС,” в Тезисы докладов, Третья Российская конференция по радиохимии (Радиохимия-2000), Санкт-Петербург, Россия, 2000, стр. 103. (E. E. Konovalov, O. V. Starkov, M. P. Myshkovskii, L. S. Gudkov, A. K. Nardova, “The immobilization of cesium and strontium fixed on silica gel into mineral-like matrices in the SSS mode,” in Book of Abstr. 3rd Russ. Conf. on Radiochemistry (Radiochemistry-2000), St. Petersburg, Russia, 2000, p. 103.)
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/33/026/33026137.pdf;
    Retrieved on: Aug. 18, 2018
  4. К. К. Корченкин, А. Н. Машкин, Е. Г. Дзекун, Б. Н. Парфанович, Е. А. Филиппов, “Использование силикагеля для промежуточного хранения долгоживущих радионуклидов,” в Тезисы докладов, Третья Российская конференция по радиохимии (Радиохимия-2000), Санкт-Петербург, Россия, 2000, стр. 125. (K. K. Korchenkin, A. N. Mashkin, E. G. Dzekun, B. N. Parfanovich, E. A. Filippov, “Use of silica gel for intermediate storage of long-lived radionuclides,” in Book of Abstr. 3rd Russ. Conf. on Radiochemistry (Radiochemistry-2000), St. Petersburg, Russia, 2000, p. 125.)
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/33/026/33026137.pdf;
    Retrieved on: Aug. 18, 2018
  5. M. Moeller, R. Waitz, “Mikrowellen In-Fass TrocknungEffektives Eindampfen von radioaktiven Flüssigabfällen,” ATW-Int. Z. Kernenerg., vol. 52, no. 12, pp. 807 – 810, 2007. (M. Moeller and R. Waitz, “Microwave in-drum drying. Effective evaporation of radioactive liquid waste,” ATW-Int. Z. Kernenerg., vol. 52, no. 12, pp. 807 – 810, 2007)
  6. С. А. Кулюхин, А. Н. Каменская, В. А. Лавриков, “Механизм разложения UO2(NO3)2∙6H2O под действием микроволнового излучения,” Радиохимия, т. 51, но. 3, стр. 262 – 268, 2009. (S. A. Kulyukhin, A. N. Kamenskaya, V. A. Lavrikov, “Mechanism of UO2(NO3)2∙6H2O decomposition under the action of microwave radiation,” Radiochemistry, vol. 51, no. 3, pp. 262 – 268, 2009.)
    DOI: 10.1134/S1066362209030084
  7. С. А. Кулюхин, А. Н. Каменская, И. А. Румер, “Механизм разложения UO2(NO3)2∙6H2O под действием микроволнового излучения: Часть 2,” Радиохимия, т. 51, но. 5, стр. 469 – 478, 2009. (S. A. Kulyukhin, A. N. Kamenskaya, I. A. Rumer, “Mechanism of UO2(NO3)2∙6H2O decomposition under the action of microwave radiation: Part 2,” Radiochemistry, vol. 51, no. 5, pp. 469 – 478, 2009.)
    DOI: 10.1134/S1066362209050063
  8. Р. А. Лидин, Л. Л. Андреева, В. А. Молочко, Константы неорганических соединений. Справочник, Москва, Россия: Дрофа, 2006. (R. A. Lidin, L. L. Andreeva, V. A. Molochko, Constants of Inorganic Compounds: Handbook, Moscow, Russia: Drofa, 2006.)
    Retrieved from: https://www.twirpx.com/file/248297/;
    Retrieved on: Aug. 18, 2018
  9. Ю. Ю. Лурье, Справочник по аналитической химии, Москва, Россия: Химия, 1971, стр. 92 – 101. (Yu. Yu. Lur’e, Handbook of Analytical Chemistry, Moscow, Russia: Khimiya, 1971, pp. 92 – 101.)
    Retrieved from: https://chem-space.pp.ua/025-lure-juju-spravochnik-po-analiticheskoj-himii-1971-i-1989-djvu.html;
    Retrieved on: Aug. 18, 2018
  10. JCPDS—Int. Centre for Diffraction Data, PDF 77-0121, UO2(NO3)2·6H2O, ICDD, Newtown Square (PA), USA, 2018.
  11. JCPDS—Int. Centre for Diffraction Data, PDF 16-0204, UO2(OH)(NO3)·3H2O, ICDD, Newtown Square (PA), USA, 2018.
  12. JCPDS—Int. Centre for Diffraction Data, PDF 16-0203, UO2(OH)(NO3)·4H2O, Newtown Square (PA), USA, 2018.
  13. JCPDS—Int. Centre for Diffraction Data, РDF 70-0176, (UO2)2(OH)2(NO3)2·4H2O, ICDD, Newtown Square (PA), USA, 2018.
  14. JCPDS—Int. Centre for Diffraction Data, РDF 83-2392, (UO2)2(SiO4)·2H2O, ICDD, Newtown Square (PA), USA, 2018.
  15. JCPDS—Int. Centre for Diffraction Data, РDF 49-0014, (UO2)2(SiO4)2∙2H2O, ICDD, Newtown Square (PA), USA, 2018.
  16. JCPDS—Int. Centre for Diffraction Data, РDF 35-0491, (UO2)2(SiO4)·2H2O, ICDD, Newtown Square (PA), USA, 2018.
  17. JCPDS—Int. Centre for Diffraction Data, РDF 43-0364, UO3·2H2O, ICDD, Newtown Square (PA), USA, 2018.
  18. JCPDS—Int. Centre for Diffraction Data, РDF 29-1376, UO3·2H2O, ICDD, Newtown Square (PA), USA, 2018.
  19. F. K. Stohl, D. K. Smith, “The crystal chemistry of the uranyl silicate minerals,” Am. Mineral., vol. 66, no. 5-6, pp. 610 – 625, 1981.
    Retrieved from: https://pdfs.semanticscholar.org/55d1/1ed1a25a03c6d9fdf96ec99ff0f5f96b2845.pdf;
    Retrieved on: May 25, 2018
  20. R. A. Porter, W. J. Weber, “The interaction of silicic acid with iron(III) and uranyl ions in dilute aqueous solution,” J. Inorg. Nucl. Chem., vol. 33, no. 8, pp. 2443 – 2449, Aug. 1971.
    DOI: 10.1016/0022-1902(71)80219-1
  21. H. Moll, G. Geipel, W. Matz, G. Bernhard, H. Nitsche, “Solubility and speciation of (UO2)2SiO4∙2H2O in aqueous systems,” Radiochim. Acta, vol. 74, no. S1, pp. 3 – 7, 1996.
    DOI: 10.1524/ract.1996.74.special-issue.3
Radiation Physics

THE SPES FACILITY AS AN INTENSE NEUTRON SOURCE: RADIATION RESISTANCE OF POLYMERIC MATERIALS AND RESIDUAL ACTIVATION CALCULATIONS

Matteo Ferrari et al.

Pages: 98-105

DOI: 10.21175/RadJ.2018.02.016

Received: 15 JUN 2018, Received revised: 4 NOV 2018, Accepted: 5 NOV 2018, Published online: 27 DEC 2018

SPES is a new generation ISOL facility for the production of intense Radioactive Ion Beams by fission reactions at high rate. Two main topics related to the management of SPES as an intense neutron source are here discussed: the radiation resistance of polymeric components used for its construction and the residual activation of the system after machine shutdown. Radiation effects on elastomeric O-rings and lubricating grease are experimentally investigated to assure reliable operation of the facility and safe post-operation management. Experimental protocols have been developed to irradiate samples in a neutron and gamma facility of a TRIGA Mark II nuclear research reactor. Based on the results of post-irradiation mechanical tests, the most radiation-resistant products are selected. A case study is dedicated to the life prediction of the O-ring of a SPES gate valve. Moreover, extensive Monte Carlo calculations are performed to evaluate the residual radioactivity of the facility after operation. The outcomes represent useful inputs to plan inspection and maintenance during the facility shutdown.
  1. G. Prete et al., “The SPES project at the INFN-Laboratori nazionali di Legnaro,” EPJ Web Conf.,vol. 66, 11030, Mar. 2014.
    DOI: 10.1051/epjconf/20146611030
  2. A. Andrighetto et al., “Multifoil UCx target for the SPES project – An update,” Eur. Phys. J. A,vol. 30, no. 3, pp. 591 – 601, Dec. 2006.
    DOI: 10.1140/epja/i2006-10144-3
  3. A. Monetti et al., “The RIB production target for the SPES project,” Eur. Phys. J. A,vol. 51, 128, Oct. 2015.
    DOI: 10.1140/epja/i2015-15128-6
  4. R. O. Bolt, J. G. Carrol, Radiation Effects on Organic Materials, New York (NY), USA: Academic Press, 1963.
  5. A. Zenoni et al., “Radiation resistance of elastomeric O-rings in mixed neutron and gamma fields: Testing methodology and experimental results,” Rev. Sci. Instrum.,vol. 88, no. 11, 113304, Nov. 2017.
    DOI: 10.1063/1.5011035
  6. A. Andrighetto et al., “SPES: An intense source of Neutron-Rich Radioactive Beams at Legnaro,” IOP Conf. Series: J. Phys. Conf. Ser., vol. 966, 012028, 2018.
    DOI: 10.1088/1742-6596/966/1/012028
  7. M. Ferrari et al., “An Irradiation Campaign of Lubricants at TRIGA Mark II Nuclear Reactor for the European Spallation Source (ESS) and the Selective Production of Exotic Species (SPES) facilities,” in Proc. 26th Int. Conf. Nuclear Energy for New Europe (NENE 2017), Bled, Slovenia, 2017, pp. 301.1 – 301.8.
    Retrieved from: https://www.djs.si/proc/nene2017/html/pdf/NENE2017_all.pdf;
    Retrieved on: Jun. 13, 2018
  8. D. Battini et al., “Experimental testing and numerical simulations for life prediction of gate valve O-rings exposed to mixed neutron and gamma fields,” unpublished.
  9. R. M. Mortier, M. F. Fox, S. T. Orszulik, “Lubricating grease,” in Chemistry and Technology of lubricants, 3rd ed., Springer, 2010, ch. 14, pp. 411 – 432.
    DOI: 10.1007/978-1-4020-8662-5
  10. MCNPXTM version 2.7.0, Radiation Safety Information Computational Center, Oak Ridge (TN), USA, 2011.
    Retrieved from: https://rsicc.ornl.gov/;
    Retrieved on: Jun. 14, 2018
  11. M. Ferrari et al., A residual activation study on the SPES Front-End: Dosimetry and Radiation Protection Calculations, SPES-Note-WPB06_04_0004, Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Italy, 2017.
  12. A. Ferrari, P. R. Sala, A. Fasso, J. Ranft, FLUKA: A Multi-Particle Transport Code,” SLAC-R-773, CERN, Switzerland, 2005.
    Retrieved from: https://www.fluka.org/fluka.php?id=secured_intro;
    Retrieved on: Jun. 14, 2018
  13. F. X. Gallmeier et al., “The CINDER’90 transmutation code package for use in accelerator applications in combination with MCNPX,” in 19th Meeting on Collaboration of Advanced Neutron Sources (ICANS XIX), Grindelwald, Switzerland, 2010.
    Retrieved from http://www.oecd-nea.org/tools/abstract/detail/CCC-0755/
    Retrieved on: Jun. 14, 2018
  14. D. Chiesa, “Development and Experimental Validation of a Monte Carlo Simulation Model for the TRIGA Mark II Reactor,” Ph.D. dissertation, Università degli Studi di Milano Bicocca, Milan, Italy, 2013.
  15. S. Pandini et al., “Effect of combined gamma and neutron irradiation on EPDM and FPM elastomers” in AIP Conference Proceedings, 1981, 020052 (2018)
    DOI: 10.1063/1.5045914
Radiation in Medicine

NEW METHOD DEVELOPMENT FOR MEDICAL RADIONUCLIDE 223,224Ra, 225Ac PRODUCTION

V.N. Panteleev, A.E. Barzakh, L.Kh. Batist, D.V. Fedorov, V.S. Ivanov, S.A. Krotov, P.L. Molkanov, S.Yu. Orlov, M.D. Seliverstov, Yu.M. Volkov

Pages: 106-109

DOI: 10.21175/RadJ.2018.02.017

Received: 16 MAY 2018, Received revised: 28 SEP 2018, Accepted: 26 OCT 2018, Published online: 27 DEC 2018

The cyclotron C-80 capable of producing 40–80 MeV proton beams with a current of 100–200 μA has been constructed and put into operation at PNPI NRC KI (Petersburg Nuclear Physics Institute of National Research Center “Kurchatov Institute”) [1]. Presently the system has been worked out for the simultaneous beam transportation to the target stations for radioisotope production and to the medical box for the treatment of ophthalmologic diseases. One of the main goals of the C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. For this purpose the project of the radioisotope complex RIC-80 (Radio Isotopes at the cyclotron C-80) has been developed. The mass-separator application at one of the three target stations of RIC-80 will allow on-line or semi on-line production of a high purity radioisotopes. Among them are radionuclides 223,224Ra and 225Ac which decay by the alpha particle emission and are used for therapy of malignant tumors at the early stage of their appearance. The results of target and ion source tests for the production of radioisotopes 223,224Ra and 225Ac by different methods, including one with the mass-separator use, are presented.
  1. S. A. Artamonov et al., “Design Features of the 80 MeV H- Isochronous Cyclotron in Gatchina,” in PNPI High Energy Physics Division: Main Scientific Activities 2007-2012, G. D. Alkhazov, Ed., Gatchina, Russia: PNPI of NRC “Kurchatov Institute”, 2013, ch. 5, pp. 332 – 338.
    Retrieved from: http://hepd.pnpi.spb.ru/hepd/articles/PNPI_2007-2012.pdf;
    Retrieved on: May 14, 2018
  2. V.N. Panteleev et al., “Project of the Radioisotope Facility RIC-80 at PNPI,” in PNPI High Energy Physics Division: Main Scientific Activities 2007-2012, G. D. Alkhazov, Ed., Gatchina, Russia: PNPI of NRC “Kurchatov Institute”, 2013, ch. 4, pp. 278 - 282.
    Retrieved from: http://hepd.pnpi.spb.ru/hepd/articles/PNPI_2007-2012.pdf;
    Retrieved on: May 14, 2018.
  3. V. N. Panteleev et al., “The radioisotope complex project “RIC-80” at thePetersburg Nuclear Physics Institute,” Rev. Sci. Instrum. vol. 86, no. 12, 123510, Dec. 2015.
    DOI: 10.1063/1.4937620
    PMid: 26724030
  4. V. N. Panteleev et al., “Target development for medical radionuclides 67Cu and 82Sr production,” in Proc. 5th Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2017), Budva, Montenegro, 2017, pp. 43 – 47.
    DOI: 10.21175/RadProc.2017.10
  5. H. Javar, D. I. Quinn, “Targeted α-particle therapy of bone metastases in prostate cancer,” Clin. Nucl. Med., vol. 38, no. 12, pp. 966 – 971, Dec. 2013.
    DOI: 10.1097/RLU.0000000000000290
    PMid: 24212441
    PMCid: PMC3874447
  6. S. Reitkopf-Brodutch et al., “Ablation of experimental colon cancer by intratumoral 224Ra-loaded wires is mediated by alpha particles released from atoms which spread in the tumor and can be augmented by chemotherapy,” Int. J. Radiat. Biol.,vol. 91, no. 2, pp. 179 – 186, Feb. 2015.
    DOI: 10.3109/09553002.2015.959666
    PMid: 25179346
  7. S. Ermolaev et al., “Production of Actinium-225 and Radium-223 from Natural Thorium Irradiated with Protons,” in Book of Abstracts, 7th Int. Conf. Isotopes (ICI 7)[ST1], Moscow, Russia, 2011, p. 32.
    DOI: 10.1134/S1066362211010103
  8. V. N. Panteleev et al., “Status of The Project of Radioisotope Complex RIC-80 (Radioisotopes at Cyclotron C-80) at PNPI,” Proc. 3rd Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2015), Budva, Montenegro, 2015, pp. 51 – 56
    Retrieved from: http://www.rad2015.rad-conference.org/pdf/Proceedings%20RAD%202015.pdf
    Retrieved on: May 14, 2018
  9. V. N. Panteleev et al., “Studies of uranium carbide targets of a high density,” Nucl. Instrum. Methods Phys. Res. B, vol. 266, no. 19-20, pp. 4247 – 4251, Oct. 2008.
    DOI: 10.1016/j.nimb.2008.05.045
  10. V.N. Panteleev et al., “High temperature ion sources with ion confinement,” Rev. Sci. Instrum., vol. 73, no. 2, 738, Feb. 2002.
    DOI: 10.1063/1.1427345
Radiation Protection

RADIATION PROTECTION IN RADIOTHERAPY DEPENDS ON UNCERTAINTIES IN SMALL FIELD DOSIMETRY

Sonja Petkovska, Margarita Ginovska, Hristina Spasevska, Yasin Acarbas

Pages: 110-116

DOI: 10.21175/RadJ.2018.02.018

Received: 3 APR 2018, Received revised: 11 SEP 2018, Accepted: 12 OCT 2018, Published online: 27 DEC 2018

Technological improvements in radiotherapy machines using small fields (SF) have improved mechanical accuracy and stability, as well as dosimetric control. Small fields are nonstandard radiation fields, for which reference dosimetry cannot be reliably performed using the existing protocols. Field size definition, difficulties of accurate measurements, modeling of SF dose calculations in Treatment Planning System (TPSs), calibration protocol establishing, reference condition achievements, are some of the challenges in SF Dosimetry. Small and Intensity Modulated Radiation Therapy (IMRT) field dosimetry can be very complex – large perturbation effects could make a significant impact on reference dosimetry procedures and output factors. Comparison between different detectors provides valuable information. The aim of this paper is to evaluate the differences of dose profiles and depth dose measured in the same conditions for standard and non-standard radiation fields. Measurements are performed using detectors with different sensitive volumes. Beam quality as well as symmetry and flatness are analyzed. Results from the measurements show that the differences for SF are obvious at the edge of the profiles and in the penumbra region, as well as in the build-up region into depth dose curves. To avoid the uncertainties, for static SF where reference conditions cannot be met and for IMRT fields where delivery conditions are far removed from calibration conditions, the new formalism should be implemented.
  1. F. M. Khan, The Physics of Radiation Therapy, 3rd ed., Philadelphia (PA), USA: Lippincott Williams & Wilkins, 2003.
    Retrieved from: https://ucrfisicamedica.files.wordpress.com/2010/10/phys-of-radiation-therapy-3-edicion-khan.pdf;
    Retrieved on: Aug. 14, 2018
  2. E. B. Podgorsak, Radiation Physics for Medical Physicists, 2nd ed., Berlin, Germany: Springer-Verlag Berlin Heidelberg, 2006.
    DOI: 10.1007/978-3-642-00875-7
  3. Comprehensive QA for Radiation Oncology, Rep. 46, AAPM, Alexandria (VA), USA, 1994.
    Retrieved from: https://www.aapm.org/pubs/reports/RPT_46.PDF;
    Retrieved on: Aug. 18, 2018
  4. AAPM code of practice for radiotherapy accelerators: Reports of AAPM radiation therapy, Rep. 47, AAPM, Alexandria (VA), USA, 1994.
    Retrieved from: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.597398;
    Retrieved on: Aug. 18, 2018
  5. Protocol for Clinical Reference Dosimetry of High-Energy Photon and Electron Beams, Rep. 67, AAPM, Alexandria (VA), USA, 1999.
    Retrieved from: https://www.aapm.org/pubs/reports/RPT_67.pdf;
    Retrieved on: Aug. 18, 2018
  6. Dosimetry of High-Energy Photon Beams based on Standards of Absorbed Dose to Water, ICRU Report 64, ICRU, Bethesda (MD), USA, 2000.
    Retrieved from: https://www.tandfonline.com/doi/pdf/10.1080/j.1600-0455.2002.4306211.x?needAccess=true;
    Retrieved on: Aug. 18, 2018
  7. Absorbed dose determination in external beam radiotherapy, IAEA TRS-398, IAEA, Austria, Vienna, 2006.
    Retrieved from: http://naweb.iaea.org/nahu/DMRP/documents/CoP_V12_2006-06-05.pdf;
    Retrieved on: May 3, 2018
  8. Particular Requirements for the safety of Electron Accelerators in the Range 1MeV to 50MeV, IEC 60601-2-1, International Electrotechnical Commission, Switzerland, Geneva, Jun. 30, 1998.
  9. Calibration of reference dosimeters for external beam radiotherapy, IAEA TRS-469, IAEA, Austria, Vienna, 2009.
    Retrieved from: http://pub.iaea.org/MTCD/publications/PDF/trs469_web.pdf
    Retrieved on: May 3, 2018
  10. PTW products for radiation therapy, PTW, Freiburg, Germany, 2018.
    Retrieved from: http://www.ptw-usa.com/radiation_therapy.html?&cId=3279;
    Retrieved on: May 3, 2018
  11. Absorbed Dose Determination in Small Fields for High Energy Photon Beams, PTW, Freiburg, Germany, 2014.
    Retrieved from: https://www.ptw.de/typo3conf/ext/naw_securedl/secure.php?u=0&file=ZmlsZWFkbWluL2ludGVybmF scy9yYWRfdGhlcmFweS9BYnNvcmJlZF9Eb3NlX0RldGVybWluYXRpb25fU21hbGxfRmllbGRzX05vdGV fZW5fNTYwMjEwMDNfMDIucGRm&t=1528631687&hash=05a8fc5510cf429395f4bb1d8250736d
    Retrieved on: May 3, 2018
  12. J. Herzen, M. Todorovic, F. Cremers, D. Albers, R. Schmidt, “Dosimetric Evaluation of a 2D pixel ionization chamber for implementation in clinical routine,” Phy. Med. Biol., vol. 52, no. 4, pp. 1197 – 1208, Feb. 2007.
    DOI: 10.1088/0031-9155/52/4/023
    PMid: 17264380
  13. A. J. D. Scott et al., “Characterizing the influence of detector density on dosimeter response in non-equilibrium small photon fields,” Phys. Med. Biol., vol. 57, no. 14, pp. 4461 – 4476, Jun. 2012.
    DOI: 10.1088/0031-9155/57/14/4461
    PMid: 22722374
  14. M. M. Aspradakis et al., Small Field MV Photon Dosimetry, Rep. 103, IPEM, York, UK, 2010.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/42/026/42026419.pdf;
    Retrieved on: Aug. 18, 2018
  15. D. Cyarnecki, K. Zink, “Monte Carlo calculated correction factors for diodes and ion chambers in small photon fields,” Phys. Med. Biol., vol. 58, no. 8, pp. 2431 – 2444, Apr. 2013.
    DOI: 10.1088/0031-9155/58/8/2431
    PMid: 23514734
  16. P. Francescon et al., “Calculation of k(Q(clin), Q(msr))(f(clin),f(msr)) for several small detectors and for two linear accelerators using Monte Carlo simulations,” Med. Phys., vol. 38,no. 12, pp. 6513 – 6527, Dec. 2011.
    DOI: 10.1118/1.3660770
    PMid: 22149834
Radiation Detectors

ANNEALING STUDIES ON IRRADIATED P-TYPE SILICON STRIP SENSORS DESIGNED FOR THE ATLAS PHASE II TRACKING DETECTOR

L. Diehl, L.Wiik-Fuchs, R. Mori, M. Hauser, K. Jakobs, U. Parzefall

Pages: 117-122

DOI: 10.21175/RadJ.2018.02.019

Received: 14 JUN 2018, Received revised: 28 SEP 2018, Accepted: 26 OCT 2018, Published online: 27 DEC 2018

In 2025 the Large Hadron Collider (LHC) will be upgraded to the High Luminosity (HL-)-LHC. This will challenge the silicon strip detector performance with very high fluences and long operation time. Sensors have been designed to survive severe radiation damage as demonstrated by electrical tests and charge collection measurements. Besides that, it is important to predict and understand the long-term evolution of the sensor properties. In this paper, detailed studies on the annealing behavior of ATLAS 12 strip detectors designed by the ITK Strip Sensor Working Group and irradiated with fluences between 5·1013 and 2·1015 neq/cm2 are presented. During the annealing time at 23°C and 58.5°C systematic charge collection, leakage current and impedance measurements have been carried out until breakdown or the appearance of charge multiplication. The phenomenon of charge multiplication in high irradiated sensors after long annealing times has been investigated with respect to dependencies on temperature and bias voltage cycling. The difference in the annealing behavior between the two temperatures has been analyzed and compared to similar measurements on n-type sensors and with a theoretical model. For sensors with fluences below 3·1014 neq/cm2 the effective doping concentration could be extracted from the impedance measurements and was compared with a theoretical model. The results show that ATLAS12 sensors anneal similarly to the previously designed ATLAS07 and the behavior is well described by the theoretical model. Nevertheless, a significant difference in the time constant of the beneficial and reverse annealing with respect to previous n-type sensors has been reported.

  1. G. Appolinari et al., High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V. 0.1, CERN Yellow Reports 226, CERN, Geneva, Switzerland, 2017.
    DOI: 10.23731/CYRM-2017-004
  2. Technical Design Report for the ATLAS Inner Tracker Strip Detector, Tech. Rep. CERN-LHCC-2017-005. ATLAS-TDR-025, CERN, Geneva, Switzerland, 2017.
    Retrieved from: https://cds.cern.ch/record/2257755/files/ATLAS-TDR-025.pdf;
    Retrieved on: Aug. 10, 2018
  3. G. Aad et al., “The ATLAS Experiment at the CERN Large Hadron Collider,” J. Instrum.,vol. 3,no. 8, S08003, Aug. 2008.
    Retrieved from: http://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08003/pdf;
    Retrieved on: Aug. 10, 2018
  4. G. Lindstrom et al., “Radiation hard silicon detectors developments by the RD48 (ROSE) Collaboration,” Nucl. Instr. Methods Phys. Res. A,vol. 466, no. 2, pp. 308 – 326, Jul. 2011.
    DOI: 10.1016/S0168-9002(01)00560-5
  5. G. Casse, P. Allport, M. Hanlon, “Improving the radiation hardness properties of silicon detectors using oxygenated n-type and p-type silicon,” IEEE Trans. Nucl. Sci., vol. 47, no. 3, pp. 527 – 532, Jun. 2000.
    DOI: 10.1109/23.856475
  6. V. Cindro, G. Kramberger et al., “Radiation damage in p-type silicon irradiated with neutrons and protons,” Nucl. Instr. Methods Phys. Res. A, vol. 599, no. 1, pp. 60 – 65, Feb. 2009.
    DOI: 10.1016/j.nima.2008.11.007
  7. G. Casse, P. P. Allport, A. Watson, “Effects of accelerated annealing on p-type silicon micro-strip detectors after very high doses of proton irradiation,” Nucl. Instr. Methods Phys. Res. A, vol. 568, no. 1, pp. 46 – 50, Nov. 2006.
    DOI: 10.1016/j.nima.2006.05.200
  8. G. Kramberger et al., “Annealing studies of effective trapping times in silicon detectors,” Nucl. Instr. Methods Phys. Res. A,vol. 571, no. 3,pp. 608 – 611, Feb. 2007.
    DOI: 10.1016/j.nima.2006.10.399
  9. M. Minano et al., “Annealing studies of silicon microstrip detectors irradiated at high neutron fluences,” Nucl. Instr. Methods Phys. Res. A, vol. 591, no. 1, pp. 181 – 183, Jun. 2008.
    DOI: 10.1016/j.nima.2008.03.051
  10. Y. Unno et al., “Development of n+-in-p large-area silicon microstrip sensors for very high radiation environments - ATLAS12 design and initial results,” Nucl. Instr. Meth. Phys. Res. A, vol. 765, pp. 80 – 90, Nov. 2014.
    DOI: 10.1016/j.nima.2014.06.086
  11. Hamamatsu photonics official web page, Hamamatsu photonics, Iwata City, Japan.
    Retrieved from: https://www.hamamatsu.com/jp/en/index.html;
    Retrieved on: Aug. 10, 2018
  12. M. Mikestikova et al., “Study of surface properties of ATLAS12 strip sensors and their radiation resistance,” in Proc. 10th International “Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD-10), Xi’An, China, 2015.
    DOI: 10.1016/j.nima.2016.03.056
  13. K. Hara et al., “Charge collection and field profile studies of heavily irradiated strip sensors for the ATLAS inner tracker upgrade,” in Proc. 10th International “Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD-10),Xi’An, China, 2015.
    DOI: 10.1016/j.nima.2016.04.035
  14. R. Mori et al., “Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade,” in Proc. 10th International “Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD-10), Xi’An, China, 2015.
    DOI: 10.1016/j.nima.2016.04.044
  15. R. M. Hernandez, “A portable readout system for silicon microstrip sensors,” Nucl. Instrum. Methods Phys. Res. A, vol. 623, no. 1, pp. 207 – 209, Nov. 2010.
    DOI: 10.1016/j.nima.2010.02.197
  16. S. Löchner, M. Schmelling, The Beetle Reference Manual – Chip Version 1.3, 1.4 and 1.5, CERN, Geneva, Switzerland, 2006.
    Retrieved from: http://inspirehep.net/record/928871/files/lhcb-2005-105.pdf?version=1;
    Retrieved on: May 22, 2018
  17. M. Moll, “Radiation Damage in Silicon Particle Detectors,” Ph.D. dissertation, University of Hamburg, Dept. of Physics, Hamburg, Germany, 1999.
    Retrieved from: https://mmoll.web.cern.ch/mmoll/thesis/pdf/moll-thesis.pdf;
    Retrieved on: Aug. 10, 2018
  18. I. Mandic, V. Cindro, G. Kramberger, M. Mikuz, “Annealing effects in n+- p strip detectors irradiated with high neutron fluences,” Nucl. Instrum. Methods Phys. Res. A, vol. 629, no. 1, pp. 101 – 105, Feb. 2011.
    DOI: 10.1016/j.nima.2010.11.057
Radiation Detectors

DIAMOND DETECTOR TECHNOLOGY: STATUS AND PERSPECTIVES

D. Hits et al.

Pages: 123-127

DOI: 10.21175/RadJ.2018.02.020

Received: 15 JUN 2018, Received revised: 10 OCT 2018, Accepted: 26 OCT 2018, Published online: 27 DEC 2018

The radiation tolerance of chemical vapor deposition (CVD) diamond against different particle species and energies has been studied in beam tests and is presented. We also present beam test results on signal size as a function of incident particle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 20 MHz/cm2. The pulse height of the sensors was measured using readout electronics with a peaking time of 6 ns. In addition, the functionality of poly-crystalline CVD diamond 3D devices is demonstrated in beam tests and 3D diamond detectors are shown to be a promising technology for applications in future high rate/high intensity experiments.

  1. M. H. Nazaré et al., Development of Diamond Tracking Detectors for High Luminosity Experiments at the LHC, R & D Proposal, Geneva, Switzerland, 1994.
    Retrieved from: https://cds.cern.ch/record/293000/files/cer-0224986.pdf;
    Retrieved on: 13.06.2018
  2. The Phase-2 Upgrade of the CMS Tracker, Technical Design Report, CERN, Geneva, Switzerland, 2018.
    Retrieved from: https://cds.cern.ch/record/2272264/files/CMS-TDR-014.pdf;
    Retrieved on: Jun. 13, 2016
  3. D. Meier et al., “Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC,” Nucl. Instrum. & Meth., vol. A426, no. 1, pp. 173 – 180, Apr. 1999.
    DOI: 10.1016/S0168-9002(98)01488-0
  4. F. Bachmair, “CVD Diamond Sensors in Detectors for High Energy Physics,” Ph.D. dissertation, ETH Zürich, 2016.
    Retrieved from: http://inspirehep.net/record/1503510/files/CERN-THESIS-2016-163.pdf;
    Retrieved on: Jun. 13, 2018
  5. L. Bäni, “Top Quarks and Diamonds,” Ph. D. dissertation, ETH Zürich, 2017.
    Retrieved from: https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/222412/Top_Quarks_and_ Diamonds.pdf?sequence=2&isAllowed=y;
    Retrieved on: Jun. 13, 2018
  6. O. Toker et al, “VIKING, a CMOS low noise monolithic 128 channel frontend for Si-strip detector readout,” Nucl. Instrum. & Meth., vol. A340, no. 3, pp. 572 – 579, Mar. 1994.
    DOI: 10.1016/0168-9002(94)90140-6
  7. C. Colledani et al., “A submicron precision silicon telescope for beam test purposes,” Nucl. Instrum. & Meth., vol. A372, no. 3, pp. 379 – 384, Apr. 1996.
    DOI: 10.1016/ 0168-9002(95)01414-4.
  8. W. Adam, et al., “Pulse height distribution and radiation tolerance of CVD diamond detectors,” Nucl. Instrum. & Meth., vol. A447, no. 1-2, pp. 244-250, June 2000.
    DOI: 10.1016/S0168-9002(00)00195-9
  9. πM1 Beam Line, Paul Scherrer Institute, Villigen, Switzerland, 2018.
    Retrieved from: https://www.psi.ch/sbl/pim1-beamline;
    Retrieved on: Jun. 13, 2018
  10. H. C. Kästli et al., “Design and performance of the CMS pixel detector readout chip,” Nucl. Instrum. Meth.,
    vol. A565, no. 1, pp. 188 – 194, Sep. 2006.
    DOI: 10.1016/j.nima.2006.05.038
  11. S. Ritt, DRS4 Evaluation Board, Paul Scherrer Institut, Villigen, Switzerland, 2018.
    Retrieved from: http://www.psi.ch/drs/evaluation-board;
    Retrieved on: Jun. 14, 2018
  12. S. Parker, C. J. Kenney, J. Segal, “3-D: A proposed new architecture for solid state radiation detectors,” Nucl. Instrum. Meth. Phys. Res., vol. A395, no. 3, pp. 328 – 343, Aug. 1997.
    DOI: 10.1016/S0168-9002(97)00694-3
  13. F. Bachmair et al.,“A 3D Diamond Detector for Particle Tracking,” Nucl. Instrum. Meth. Phys. Res., vol. A786, pp. 97 – 104, Jun. 2015.
    DOI: 10.1016/j.nima.2015.03.033
  14. II-VI Inc. official webpage, Saxonburg (PA), USA, 2018.
    Retrieved from: https://www.ii-vi.com;
    Retrieved on: Jun. 14, 2018
  15. M. J. Booth et al., “Study of cubic and hexagonal cell geometries of a 3D diamond detector with a proton micro-beam,” Diam. Relat. Mater., vol. 77, pp. 137 – 145, Aug. 2017.
    DOI: 10.1016/j.diamond.2017.06.014
  16. H. C. Kästli, “Frontend electronics development for the CMS pixel detector upgrade,” Nucl. Instrum. Meth.,
    vol. A731, pp. 88 – 91, Dec. 2013
    DOI: 10.1016/j.nima.2013.05.056
Radiation Effects

PERFORMING THE FIRST SINGLE EVENT EFFECT TESTS USING THE METU DEFOCUSING BEAM LINE IN TURKEY

Ç. Yazgan, M. B. Demirköz, M. Yiğitoğlu, S. Niğdelioglu, P. Uslu, I. Efthymiopoulos

Pages: 128-132

DOI: 10.21175/RadJ.2018.02.021

Received: 15 JUN 2018, Received revised: 10 OCT 2018, Accepted: 26 OCT 2018, Published online: 27 DEC 2018

METU-Defocusing Beam Line (METU-DBL) project aims to perform Single Event Effect (SEE) tests for space, nuclear and other applications. Turkish Atomic Energy Authority (TAEA) has a cyclotron which can accelerate protons up to 30 MeV kinetic energy at the Proton Accelerator Facility (PAF) mainly for radioisotope production and for research and development (R&D) purposes. In the facility, the stable proton beam current is variable between 0.1 µA to 1.2 mA and the beam size is nearly 1 cm x 1 cm. METU-DBL pre-test setup, which has been installed in the R&D room, enlarges the beam size with two quadrupole magnets and it reduces the proton flux with a collimator. The pretest setup beam size is about 10 cm x 10 cm and the beam flux is 108 p/cm2/s. The first tests of electronic cards, detectors and also commercial and experimental solar cells have been performed using this setup. Also, the final configuration of METU-DBL is now under construction to provide a beam according to ESA ESCC No. 25100 standard. MCNP Monte Carlo codes were used for the calculations of secondary particles (neutrons, gammas) and residuals.
  1. Proton hizlandiricisi tesýsý, Türkýye atom enerjýsý kurumu, Ankara, Türkiye, 2012. (Proton Accelerator Facility, Turkish Atomic Energy Authority, Ankara, Turkey, 2012.)
    Retrieved from: http://www.taek.gov.tr/tr/component/remository/func-startdown/629/lang,tr-tr/?Itemid=301;
    Retrieved on: May 6, 2018
  2. T. Goorley, “MCNP­™ 6.1.1 - Beta Release Notes (LA-UR-14-24680),” Los Alamos National Laboratory: Los Alamos (NM), USA, 2014.
    Retrieved from: https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-14-24680.pdf
    Retrieved on: Jun. 14, 2018
  3. E. Petersen, Single Events Effects in Aerospace, Hoboken (NJ), USA: Wiley-IEEE Press, 2011.
    DOI: 10.1002/9781118084328
  4. K. A. LaBel et al., “Compendium of Single Event Effects, Total Ionizing Dose, and Displacement Damage for Candidate Spacecraft Electronics for NASA,” in Proc. 2014 IEEE Radiation Effects Data Workshop (REDW), Paris, France, 2014, pp. 1 – 12.
    Retrieved from: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120015010.pdf;
    Retrieved on: Jun. 11, 2018
  5. Single Event Effects Test Method and Guidelines, ESCC Basic Specification No. 25100, ESA, Paris, France, 2014.
    Retrieved from: https://escies.org/download/webDocumentFile?id=62690;
    Retrieved on: Jun. 12, 2018
  6. A. Stoica et al., “Evolutionary recovery from radiation induced faults on reconfigurable devices,” in Proc. 2004 IEEE Aerospace Conference, Big Sky (MT), USA, 2004, pp. 2449 – 2457.
    Retrieved from: https://trs.jpl.nasa.gov/bitstream/handle/2014/38488/03-3499.pdf?sequence=1;
    Retrieved on: Jun. 13, 2018
  7. J. M. Lauenstein, “Standards for Radiation Effects Testing: Ensuring Scientific Rigor in the Face of Budget Realities and Modern Device Challenges,” presented at the Hardened Electronics and Radiation Technology Conference (HEART 2015), Chantilly (VA), USA, Apr. 2015.
    Retrieved from: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150011462.pdf;
    Retrieved on: Jun. 13, 2018
  8. Y. Wu et al., “CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC,” Annals of Nuclear Energy, vol. 82, pp. 161 – 168, Aug. 2015.
    DOI: 10.1016/j.anucene.2014.08.058
  9. J. K. Shultis, E. E. Faw, An MCNP Primer, Kansas State University, Manhattan (KS), USA, 2011.
    Retrieved from: http://www.mne.k-state.edu/~jks/MCNPprmr.pdf;
    Retrieved on: Jun. 12, 2018
Radiotherapy

PARAMETRIC STOCHASTIC MODEL OF BONE STRUCTURES TO BE USED IN COMPUTATIONAL DOSIMETRIC PHANTOMS OF HUMAN SKELETON

E.A. Shishkina, V.I. Zalyapin, Yu.S. Timofeev, M.O. Degteva, M. Smith, B. Napier

Pages: 133-137

DOI: 10.21175/RadJ.2018.02.022

Received: 2 JUL 2018, Received revised: 12 NOV 2018, Accepted: 20 NOV 2018, Published online: 27 DEC 2018

The estimation of dose factors for active marrow exposed to bone-seeking beta-emitters, such as 89Sr and 90Sr/90Y (0 – 1.5 MeV and 0 – 2.4 MeV, respectively), is an important task of bone dosimetry. Monte Carlo simulations of electron – photon transport to calculate the active marrow doses are based on the geometrical modeling of bone structures. The model geometry should consist of accurate descriptions of spongiosa fine structure and cortical bone thickness (because of the high probability of low energy electron emission) as well as descriptions of bone macro-dimensions (because the maximum electron path length in spongiosa is about 5-9 mm). New computer tomography (CT) -based methods are widely applied to develop computational dosimetric phantoms. The advantage of the CT-based method is in high realism of the description of complex bone shape as well as in the possibility of an adequate description of bone microstructure with µCT. However, the method has a number of disadvantages, viz.: (1) the method is laborious and expensive; (2) the use of cadavers is associated with organizational difficulties; (3) one cadaver –based model can be non-representative and does not allow estimation of the uncertainties associated with individual variability of human anatomy; (4) cortical bone thickness is fixed based on the CT, for which resolution is worse than the measurand; (5) in practice, the limitation in voxel resolution of the computational phantom often results in narrowing down the strong points given by µCT because of an inadequate representation of the microstructure. Moreover, high individual variability of bone shapes and macro-dimensions negates the advantages of the above-mentioned high realism. The aim of the presented study is to elaborate the algorithm of parametric bone modeling, which allows for the generation of phantoms of hematopoietic bone segments based on known micro- and macro dimensions. We propose an approach that permits easy subdivision of bones into small segments, which may be described by simple-shape geometric figures with appropriate voxel resolution. Spongiosa structure (presented by a stochastic rod-like model and calibrated by literature-derived bone volume-to-total volume ratio) is covered by a homogenous cortical layer. All parameters of the proposed cadaver-free model can be obtained from the literature on morphometry and hystomorphometry. Moreover, the parametric modeling allows the simulation of individual variability of bone-specific dimensions.

  1. L. Yu. Krestinina et al., “Leukaemia incidence in the Techa River Cohort: 1953-2007,” Brit. J. Cancer, vol. 109, no. 11, pp. 2886 – 2893, Nov. 2013.
    DOI: 10.1038/bjc.2013.614
    PMid: 24129230
    PMCid: PMC3844904
  2. M. O. Дегтева и др, “Современное представление о радиоактивном загрязнении реки Теча в 1949–1956 гг.,” Радиационная биология. Радиоэкология, т. 85, no. 5, стр. 532-534, 2016 (M. O. Degteva et al., “Contemporary understanding of radioactive contamination of the Techa River in 1949–1956,” Radiat. Biol. Radioecol., vol. 85, no. 5, pp. 532 – 534, 2016.)
    DOI: 10.7868/S0869803116050039
  3. A. V. Akleev et al., “Consequences of the radiation accident at the Mayak production association in 1957 (the `Kyshtym Accident`),” J. Radiol. Prot., vol. 37, no. 3, pp. R19 - R42, Aug. 2017.
    DOI: 10.1088/1361-6498/aa7f8d
    PMid: 28703713
  4. A. Aarkrog et al., “Radioactive inventories from the Kyshtym and Karachay accidents: estimates based on soil samples collected in the South Urals (1990-1995),” Sci. Total Environ., vol. 201, no. 2, pp. 137 – 154, Aug 1997.
    DOI: 10.1016/S0048-9697(97)00098-3
  5. M. O. Degteva et al., “Development of an improved dose reconstruction system for the Techa River population affected by the operation of the Mayak Production Association,” Radiat. Res., vol. 166, no. 1, e0174641, Aug. 2006.
    DOI: 10.1667/RR3438.1
    PMid: 16808612
  6. Z. Zhang et al., “Correction of confidence intervals in excess relative risk models using Monte Carlo dosimetry systems with shared errors,” PLOS ONE, vol. 12, no. 4, pp. 255 – 270, Apr. 2017.
    DOI: 10.1371/journal.pone.0174641
    PMid: 28369141
    PMCid: PMC5378348
  7. J. R. Whitwell, F. W. Spiers, “Calculated beta ray dos factors for trabecular bone,” Phys. Med. Biol., vol. 21, no. 1, pp. 16 – 38, Nov. 1976.
    DOI: 10.1088/0031-9155/21/1/002
    PMid: 1257296
  8. A. Shah et al., “A paired-image radiation transport model for skeletal dosimetry,” J. Nucl. Med., vol. 46, no. 2, pp. 344 – 353, Feb. 2005.
    Retrieved from: http://jnm.snmjournals.org/content/46/2/344.full.pdf+html;
    Retrieved on: May 20, 2018
  9. D. W Dempster et al., “Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee,” J. Bone Miner. Res., vol. 28, no. 1, pp. 2 – 17, Jan. 2013.
    DOI: 10.1002/jbmr.1805
    PMid: 23197339
    PMCid: PMC3672237
  10. D. M. Connor et al., “Comparison of diffraction-enhanced computed tomography and monochromatic synchrotron radiation computed tomography of human trabecular bone,” Phys. Med. Biol., vol. 54, no. 20, pp. 6123 – 6133, Oct. 2009.
    DOI: 10.1088/0031-9155/54/20/006
    PMid: 19779219
  11. A. M. H. Da Silva et al., “Two and three-dimensional morphometric analysis of trabecular bone using X-ray microtomography (µCT),” Rev. Bras. Eng. Biomed., vol. 30, no. 2, pp. 93 – 101, Jun. 2014.
    DOI: 10.1590/rbeb.2014.011
  12. V. I. Zalyapin et al., “A parametric stochastic model of bone geometry,” Bulletin SUSU MMCS, vol. 11, no. 2, pp. 44 – 57, Jun. 2018.
    DOI: 10.14529/mmp180204
  13. B. A. Campbell et al., “Distribution Atlas of Proliferating Bone Marrow in Non-Small Cell Lung Cancer Patients Measured by FLT-PET/CT Imaging. With Potential Applicability in Radiation Therapy Planning,” Int. J. Radiat. Oncol. Biol. Phys., vol. 92, no. 5, pp. 1035 – 1043, Aug. 2015.
    DOI: 10.1016/j.ijrobp.2015.04.027
    PMid: 26194679
  14. F. W. Spiers et al., “Mean skeletal dose factors for beta-particle emitters in human bone: Part I: Volume-seeking radionuclides,” Brit. J. Radiol., vol. 51, no. 608, pp. 622 – 627, Aug. 1978.
    DOI: 10.1259/0007-1285-51-608-622
    PMid: 678757
  15. J. Le Grand et al., “Calculated dose factors for the radiosensitive tissues in bone,” in Proc. Second Int. Conf. on Strontium Metabolism National Technical Information Service, Washington, USA, 1972, p. 49.
  16. W. Hough et al., “An image-based skeletal dosimetry model for the ICRP reference adult male – internal electron source”, Phys. Med. Biol., vol. 56, no. 8, pp. 2309 – 2346, Apr. 2013.
    DOI: 10.1088/0031-9155/56/8/001
    PMid: 21427487
    PMCid: PMC3942888
Environmental Chemistry

CHEMICALLY DEPOSITED ELECTROCHROMIC FILMS AND SOLAR LIGHT MODULATION

Isak Aliji, Julijana Velevska, Metodija Najdoski, Atanas Tanuševski

Pages: 138-142

DOI: 10.21175/RadJ.2018.02.023

Received: 29 MAY 2018, Received revised: 21 OCT 2018, Accepted: 18 NOV 2018, Published online: 27 DEC 2018

The chemical bath deposition method was employed for the preparation of iron hexacyanoferrate (FeHCF), cobalt hexacyanoferrate (CoHCF), and tungsten oxide (WO3) films. The films were deposited onto fluorine-doped tin oxide (FTO) coated glass substrates. For practical electrochromic investigations, an electrochromic test device (ECTD) was constructed consisting of FeHCF (or CoHCF) films as the working electrode, together with WO3 film as the counter electrode, in 1 M KCl aqueous solution as an electrolyte. Visible transmittance spectra were recorded in-situ. The output integral of the spectral intensity and the spectral modulation, as well as saved energy, were calculated by taking the solar irradiance spectrum AM 1.5 for a normal illumination on the ECTD and its transmittance data in the bleached and colored states.
  1. J. M. Dussault, L. Gosselin, T. Galtsian Amundson, “Assesment of buildings energy efficiency with smart window glazing curtain walls,” in Proc. Smart materials, structures & NDT in aerospace conference (NDT Canada 2011), Montreal, Canada, 2011, pp 1 – 10.
    Retrieved from: http://www.ndt.net/article/ndtcanada2011/papers/12_Dussault_Rev2.pdf;
    Retrieved on: Aug. 27, 2018
  2. A. S. Bahaj, P. A. B. James, M. F. Jentsch, “Potential of emerging glazing technologies for highly glazed buildings in hot arid climates,” Energ. Buildings, vol. 40, no. 5, pp. 720 – 731, 2008.
    DOI: 10.1016/j.enbuild.2007.05.006
  3. J. Velevska, N. Stojanov, M. Pecovska - Gjorgjevich, M. Najdoski., “Visible light modulation using chemically deposited electrochromic thin films,” Radiation & Applications., vol. 2, no. 1, pp. 35 – 40, Apr. 2017.
    DOI: 10.21175/RadJ.2017.01.008
  4. M. Casini, “Smart windows for energy efficiency of buildings,” in Proc. of 2nd International Conference on Advances in Civil, Structural and Environmental Engineering (ACSEE 2014), Zurich, Switzerland, 2014, pp 273 – 281.
    Retrieved from: https://www.seekdl.org/assets/pdf/20141111_063159.pdf;
    Retrieved on: Aug. 27, 2018
  5. W. S. E. Bahlol, “Smart glazing systems for low energy architecture,” in Proc. SB10: Sustainable Architecture and Urban Development (SAUD ‘10), Amman, Jordan, 2010, pp. 149 – 165.
    Retrieved from: https://www.irbnet.de/daten/iconda/CIB22604.pdf;
    Retrieved on: Aug. 27, 2018
  6. R. Baetens, B. P. Jelle, A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review,” Sol. Energy Mater. Sol. Cells vol. 94, no. 2, pp 87 – 105, Feb. 2010.
    DOI: 10.1016/j.solmat.2009.08.021
  7. M. Z. Sialvi et al., “Electrochromic and Colorimetric Properties of Nickel(II) Oxide Thin Films Prepared by Aerosol-Assisted Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces, vol. 5 no. 12, pp. 5675 – 5682, Jun. 2013.
    DOI: 10.1021/am401025v
    PMid: 23748903
  8. E. S. Lee, D. L. DiBartolomeo, S. E. Selkowitz, “Electrochromic windows for commercial buildings: monitored results from a full-scale testbed,” in Proc. Summer Study on Energy Efficiency in Buildings, Efficiency and Sustainability (ACEEE 2000), Washington (DC), USA, 2000.
    Retrieved from: https://aceee.org/files/proceedings/2000/data/papers/SS00_Panel3_Paper20.pdf;
    Retrieved on: Aug. 27, 2018
  9. C. G. Granqvist, “Progress in electrochromics: tungsten oxide revisited,” Electrochim. Acta, vol. 44 no. 18, pp. 3005 – 3015, May 1999.
    DOI: 10.1016/S0013-4686(99)00016-X
  10. M. Najdoski, T. Todorovski, “A simple method for chemical bath deposition of electrochromic tungsten oxide films,” Mater. Chem. Phys., vol. 104, no. 2-3, pp. 483 – 487, Aug. 2007.
    DOI: 10.1016/j.matchemphys.2007.04.035
  11. S. Demiri, M. Najdoski, J. Velevska, “A simple chemical method for deposition of electrochromic prussian blue thin films,” Mater. Res. Bull., vol. 46, no. 12, pp 2484 – 2488, Dec. 2011.
    DOI: 10.1016/j.materresbull.2011.08.021
  12. И. Алији, “Електрохромизам кај тенки филмови од кобалт хексацијаноферат,” презентирана на 2ра Конференција на Докторската школа при Универзитетот “Св. Кирил и Методи”, Скопје, Македонија, 2018. (I. Aliji, “Electrochromism in cobalt hexacyanoferrate thin films,” presented at the 2nd Doctorial school Conference of the “Sts Cyril and Methodius” University, Skopje, Macedonia, 2018.
  13. Standard Tables for Reference Solar Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, ASTM G173-03, Jan. 11, 2012.
    Retrieved from: https://www.astm.org/Standards/G173.htm;
    Retrieved on: Aug. 27, 2018
  14. M. Ristova, R. Neskovska, V. Mirčevski, “Chemically deposited electrochromic cuprous oxide films for solar light modulation,” Sol. Energy Mat & Sol. Cells, vol. 91, no. 14, pp 1361 – 11365, Sep. 2007.
    DOI: 10.1016/j.solmat.2007.05.018
  15. H. Y. Liao, T. C. Liao, W. H. Chen, C. H. Chang, L. C. Chen, “Molybdate hexacyanoferrate (MoOHCF) thin film: Abrownishred Prussian blue analog for electrochromic window application,” Sol. Energy Mat & Sol. Cells, vol. 145, no. 1, pp 8 – 15, Feb. 2016.
    DOI: 10.1016/j.solmat.2015.06.062
  16. J. Velevska, N. Stojanov, M. Pecovska - Gjorgjevich, M. Najdoski, “Electrochromism in rungsten oxide thin films prepared by chemical bath deposition,” J. Electrochem. Sci. Eng., vol. 7, no 1, pp, 27 – 37, 2017.
    DOI: 10.5599/jese.357
  17. J. Velevska, M. Pecovska - Gjorgjevich, N. Stojanov, M. Najdoski, “Electrochromc properties of Prussian blue thin films prepared by chemical deposition method,” Int. J. Sci. Basic. Appl. Res., vol. 25, no. 3, pp. 380 – 392, 2016.
    Retrieved from: http://gssrr.org/index.php?journal=JournalOfBasicAndApplied&page=article&op=view &
    path%5B%5D=5335&path%5B%5D=2768
    ;
    Retrieved on: Aug. 27, 2018
  18. I. Aliji, M. Najdoski, J. Velevska, “A simple chemical method for deposition of electrochromic cobalt hexacyanoferrate thin films,” Int. J. Sci. Basic. Appl. Res., vol. 40, no. 1, pp. 242 – 257, 2018.
    Retrieved from: http://gssrr.org/index.php?journal=JournalOfBasicAndApplied&page=article&op=view&
    path%5B%5D=9084&path%5B%5D=4082
    ;
    Retrieved on: Aug. 27, 2018
  19. S. A. Sapp, G. A. Sotzing, J. R. Reynolds, “High contrast ratio and fast switching dual polymer electrochromic devices,” Chem. Mater., vol. 10, no. 8, pp. 2101 – 2108, Jul. 1998.
    DOI: 10.1021/cm9801237
Biomedical Engineering

VISUALIZATION AND MORPHOLOGICAL CHARACTERIZATION OF INTEGRAL SKIN CELLULAR POLYMERIC COMPOSITES USING X-RAY MICROTOMOGRAPHY

R. Pop-Iliev, W. Y. Pao, P. Karimipour-Fard, G. Rizvi

Pages: 143-146

DOI: 10.21175/RadJ.2018.02.024

Received: 14 JUN 2018, Received revised: 9 OCT 2018, Accepted: 26 OCT 2018, Published online: 27 DEC 2018

This paper focuses on 3-dimensional non-destructive characterization of the morphologies of integral-skin cellular polymeric composites using X-ray Microtomography. Rapid Rotational Foam Molding (RRFM) is a polymer processing technology that is capable of creating composites with intricate shapes that have a foamed core surrounded by an integral solid skin layer (similar to the structure of a bone). The analyzed specimens were extracted from composites processed in RRFM having a solid skin made of polypropylene (PP) grades combined with foamed cores made of both polyethylene (PE) and PP grades by implementing a suitable chemical blowing agent (CBA) in extrusion. The resulting cellular structures pertaining to the foamed core and the near-skin area were visualized and their morphological quality was evaluated in terms of cell size distribution and cell density. The stress-strain behavior and 3-dimensional structural changes were monitored and characterized with in-situ compression testing.
  1. P. Bianco, M. Riminucci, S. Gronthos, P. Gehron, “Bone marrow stromal stem cells: nature, biology, and potential applications,” Stem Cells, vol. 19, no. 3, pp. 180 – 192, 2001.
    DOI: 10.1634/stemcells.19-3-180
    PMid: 11359943
  2. V. Karageorgiou, D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474 – 5491, Sep. 2005.
    DOI: 10.1016/j.biomaterials.2005.02.002
    PMid: 15860204
  3. R. Pop-Iliev, “Processing of Integral Skin Cellular Polymeric Composites in Rapid Rotational Foam Molding,” Acta Phys. Pol. A, vol. 120, no. 2, pp. 292 – 297, 2011.
    DOI: 10.12693/APhysPolA.120.292
  4. R. Pop-Iliev, K. A. Christian, E. S. Abdalla, “Rapid Rotational Foam Molding Process,” US 8628704 B2, USA, Jan. 14, 2014.
    Retrieved from: https://patentimages.storage.googleapis.com/2d/40/f5/63d6a3b37d3ca0/US8628704.pdf;
    Retrieved on: Jun. 24, 2017
  5. K. Holmes, M. Elkington, P. Harris, “Clark’s Essential Physics in Imaging for Radiographers,” Boca Raton (FL), USA: CRC Press, ch. 5-6, sec. 3-14, pp. 68 – 90, 2013.
    DOI: 10.1201/b15383
  6. N. Aubee, P. Lam, S. Marshall, “A New Family of sHDPE Polymers for Enhanced Moisture Barrier Performance,” J. Plast. Film Sheeting, vol. 22, no. 4, pp. 315 – 330, Oct. 2006.
    DOI: 10.1177/8756087906073121
  7. P. Karimipour-Fard, W. Y. Pao, G. Rizvi, R. Pop-Iliev, “The Use of Microcomputed Tomography to Evaluate Integral-Skin Cellular Polyolefin Composites,” in Book of Abstr. Micro-CT Meeting 2018 (Micro-CT 2018), Ghent, Belgium, 2018, pp. 41 – 44.
    Retrieved from: https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/Microtomography/
    UserMeeting/AbstractBook2018.pdf
    ;
    Retrieved on: Jun. 17, 2018